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1.0 Executive Overview

There is an acute need for all-weather, day and night surveillance capable of detecting and updat-
ing the locations of militarily significant targets. Modem military operations are often conduct-
ed under less than ideal environmental conditions in which conventional optical, and infrared
sensors are paralyzed. Synthetic Aperture Radar (SAR) provides the needed coverage for tacti-
cal change detection. SAR sensors however, produce a wide variety of target signatures caused
by variations in image scenarios. The use of symbolic models, that is models based on quantita-
tive, qualitative and relational information, rather than simply quantitative data as procedural
systems, provides the required tool for successful feature classification and change analysis of
military features in SAR.

This Phase I SBIR research effort was concerned with proving the feasibility of a symbolic mod-
el-based system for classification of militarily strategic terrain features from SAR imagery, and
for long-term change detection of these features. The Phase I research concentrated on a rule-
based methodology for extraction and classification of roads as distinct from competing features
in SAR imagery.

This approach is unique in that it combines the relational, and qualitative attributes of known tar-
gets with the analytical / procedural approach of image-based processing. The symbolic model
consists of a series of attributes that define a target feature. Determination of the model at-
tributes activates image processing procedures automatically, as required, leading to an intricate
classification result.

A prototype system was created that identified three road features from competing features. The
prototype consisted of more than 120 rules which chained to over 20 image processing and anal-
ysis procedures. The operation of the system was based on a numerical scoring algorithm. For
each cued feature, the knowledge base chained through various rules, requiring the execution of
image processing sub-systems as necessary to determine the likelihood that the cued feature was
one of the six features to be classified. Additional information was gained as required either by
spawning procedures, or directly from the operator. As rules were executed a certainty factor
was updated according to the numerical scoring algorithm to indicate the likelihood that the
candidate feature was a road.

The prototype was tested on 13 candidate features in four SAR data sets selected for the project.
The test data sets comprised four SAR images from various sensors including SEASAT, JPL
multi-polarization airborne SAR, and Intera Star-I airborne SAR. The images provided a variety
of terrain and targets, including ice floe images of the Beaufort Sea, agricultural regions in
California, and urban scenes of Phoenix.

The results of this testing were successful over the four data sets indicating the feasibility of a
semi-automated symbolic/procedure based system. The rule-based system correctly classified
71% of the candidate features. This is an excellent result for a fully automated classification sys-
tem, since the initial rule system consisted on only 120 rules. This clearly shows the feasibility
of such an approach. A highly detailed system containing many times more rules for many fea-
ture types should generate equally successful results. Such a system will be proposed for Phase
II.
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2.0 Introduction

The Phase I technical objectives are summarized in section 2.1, an overview of the conclusions
appears in section 2.2, and the layout of the report is described in 2.3.

2.1 Background and Objectives of Phase I Research

The emphasis of the present effort was on the two main technical objectives for the development
of a prototype system:

(1) Demonstration of descriptive adequacy of a rule-based approach to symbolic feature
classification and change detection.

(2) Demonstration of adequacy of procedural image processing support routines for identi-
fication and segmentation of targets.

The Phase I objectives were achieved by creating a proof of concept multi-layer knowledge base
with the capability of distinguishing six features commonly occurring in SAR imagery. The
procedural adequacy was determined by manually executing image processing and polarimetry
procedures as prompted by the knowledge system and feeding the results back into the inference
engine.

At the direction of the TEC customer, the Phase I effort concentrated more strongly on develop-
ment of the symbolic approach to create a working rule-based prototype, and providing partial
development of key image processing subroutines and full specification of the less utilized image
processing programs. That is, some of the image processing and image understanding proce-
dures were fully specified including input, output and algorithms, but not coded. Also, the
customer directed Vexcel to concentrate strongly on segmentation and identification of roads and
road intersections during the Phase I effort.

The development of the prototype expert system lays the groundwork for a Phase II workstation
that will incorporate rule-based classification, procedural registration and change detection, and
high level image understanding algorithms together for effective target detection in hyper-spec-
tral image data sets.

2.2 Summary of Conclusions

Results from testing the 120 rule prototype knowledge base indicate viability of the concept for
automated target detection and identification in SAR imagery. The addition of multi-spectral, or
hyper-spectral imagery would provide more information for a rule based system in Phase II, and
a higher likelihood for success. Additional information provides more attributes for each feature
class thus creating a more complete description for classification.

The prototype knowledge base was developed in Nexpert Object 1.1 on the Macintosh II for
identification and classification of three types of roads from three competing features in SAR im-
agery. The prototype was tested on 13 candidate features from four SAR data sets including
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both satellite and airborne sensors. The JPL Raisin City data set included polarimetric data. The
classification accuracy is summarized as follows:

Targets Classified Correctly: 71%
Targets Classified Incorrectly: 29%

Targets without classification frames in the prototype were classified with no bias in 50% of the
cases, and incorrectly in 50% of the cases.

The primary reason for incorrect classification was ambiguity in the attribute description for each
feature in the frame-based implementation of the inference engine. Also, when targets were pro-
vided to the inference engine for which no frames existed to describe them, they were incorrectly
classified 50% of the time. Therefore it is important to develop frames for all possible features
of interest that may be encountered in strategic situations. Further work is required to produce
sufficiently distinct attribute sets for each feature of interest, possibly including hyper-spectral
data attributes.

The knowledge environment should be more interactive and less automated. In the current sys-
tem, potential exists for misclassification due to incomplete attribute descriptions in each frame.
Even with highly detailed frame descriptions this problem will remain with fully automated sys-
tems. With a small amount of operator interaction, the incidence of incorrect classification could
be radically reduced without much time lost.

More descriptive frames for feature classes of interest should be developed. Frames for unwant-
ed classes can be sparser as long as they are sufficient to remove such features from consider-
ation as features of interest.

The Phase H workstation should consist of an interactive environment in which the user may
communicate with the inference during processing. This will be an effective combination that
will be more efficient than an operator alone, and produce more accurate results than the expert
system alone.

There is a tradeoff between development of a broader base for classification of a wide variety of
features vs. development of highly detailed descriptions of fewer strategic targets. In the former,
each class would be described by relatively sparse frame attribute sets. Misclassification would
be more prominent, and the resulting system would essentially provide a demonstration of the
possible applicability of symbolic systems in classification and change detection. It is therefore
recommended that the Phase II effort concentrate on extensive symbolic and procedural develop-
ment of one class of features. The system architecture will be designed to accommodate numer-
ous feature classification knowledge systems, but the bulk of the time should be directed toward
producing a useful tool for automated classification and change detection.

2.3 Organization of Report

The remainder of the report is organized as follows. Section 3 describes the organization of the
knowledge, operation and control of the overall system. Development methodology of the rule
base is detailed including the breakdown of knowledge using both decision trees and analysis of
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competing features. Section 3 also discusses the operation of the control executive, issues
associated with rule based systems and certainty factors, and the usage of a non-binary scoring
function to keep track of feature likelihoods. Section 4 describes the image processing
procedural interface and requirements. All required image processing routines used in the
prototype are described in section 4 including I/O specifications and algorithms. Section 5
describes the rules. Both the "meta-rules" and the encoded Nexpert Object 1.1 rules are
discussed here. Reasoning and factual basis of each rule is discussed and tradeoffs between
exact rules system and exact image processing systems are detailed. Section 6 describes results
from tests on various SAR images from differing SAR scenarios. Section 7 is comprised of a
complete explanation of results and conclusions, and Section 8 provides recommendations for
Phase II.
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3.0 Organization of Knowledge

In a rule-based system, the knowledge representation scheme dominates the formulation of the
system. The organization of the rules can be more important than the rules themselves. The
infrastructure of the system must impose strict limitations on how new information is added and
how it may affect other data in the knowledge base. A more in depth discussion of symbolic
systems follows in Section 3.1

The first manifestation of such a strict organization of knowledge, is that the information must be
broken down into specific domains. Secondly, the rules should be organized into groups such
that each group is concerned with one or a class of similar features. This will ensure that similar
competing features in the target images will be treated by the same rules so that small differences
between competing objects can be used to advantage in the inference process. Section 3.2
further discusses the breakdown of knowledge by these two approaches.

Unlike procedural systems, in rule based systems, the boundary between logic and control is
clearly defined. The inference engine seeks to control the flow of computations by chaining
from one rule to another, while the knowledge is contained in the rules themselves. When
dynamically linked with a procedural system, an executive controller is required to dictate the
order in which sub-areas of knowledge are accessed. As a result, the inference engine should be
managed by a control executive. The executive will start, communicate with, and terminate the
inference engine. Also, the control executive will handle the interface between the inference
engine and the procedural sub-systems. The requirements of the control executive are addressed
in Section 3.3.

During the inference process, the effect of each rule must be traced. If the conclusion is not
clearly true or false, a non-binary value or score may be used to track the certainty of the
classification of the feature being processed. The issues and requirements for a scoring function
are addressed in section 3.4.

3.1 Discussion of Symbolic Systems

A symbolic classification system or model is one that uses relational, qualitative, and quantita-
tive aspects to describe an object. Symbolic systems are more general than procedural systems
which use only derived quantitative measures for classifying an object. A procedural system can
be a component of a symbolic system. Symbolic systems may take a multitude of forms and
there are a number of ways to approach the SAR feature classification and change detection
problem.

In the development of any AI system, the important issues concern representation, implementa-
tion, control and uncertainty. Section 3.3.1 discusses two alternative representations of domain-
specific, "expert" knowledge. Section 3.1.2 contains a brief discussion of the serial invocation of
such expert modules by a procedure. A multiple-pass implementation is considered in section
3.1.3. Finally, the use of a numerical measure of certainty of conclusions is introduced in 3.1.4.
This subject is discussed more fully in 3.4.1.
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3.1.1 Rules vs. Frames

Rule based processing, sometimes called a production system, represents a formal method using
the predicate calculus to infer new facts from those known already. It is in essence automated
theorem proving applied to more heuristically understood application domains. In this way,
knowledge about a certain domain is characterized by all of the assertions which can be proven
from an initial knowledge base which is encoded as a set of rules.

The "if (premise) - then (conclusion)" paradigm of rule-based processing has certain advantages.
One can add, modify, or delete rules easily, so from a programming standpoint it is a convenient
structure. On the other hand, one cannot easily access the knowledge represented by a set of
rules all at once. Moreover, combinations of rules will generally come up with unanticipated
conclusions. This is sometimes advantageous and often disadvantageous.

A brief overview of some of the deeper problems associated with the use of rules appears in sec-
tion 3.4.1.2.

The notion of a frame was introduced in [Minsky, 75]. It represents a more heuristic approach to
knowledge representation. Frames can be thought of as models for "prototypical" situations. Es-
sentially, frames attempt to collect all of the information on a given subject, object, or situation,
into a single structure in terms of its properties. As such, it has similarities to the notion of ob-
ject-oriented programming.

In this way, a frame is a network of nodes and relations, where the top levels represent generali-
ties of default assignments, i.e. the things which are always true about a situation, and the lower
levels are slots which are filled by more specific instances. A major issue is the extent to which
subclass specificities should overrule class-defaults in any given situation.

To illustrate the difference between rules and frames, we present a few examples. Rules are con-
cerned with direct relationships that equate one situation to another. For example, in a diagnostic
system:

If temperature is greater than 4000 °then reactor has overheated.
If reactor has overheated then pressure release valve should be opened.

These rules equate the situation "temperature > 4000" to "reactor has overheated", at which
point the term "reactor has overheated" can be used later. Also, there is a link defined between
"reactor has overheated" and temperature. If there is a question about opening the pressure re-
lease valve, a rule system could backward chain through ""reactor has overheated" to check the
temperature of the reactor. Rules alone can be very powerful in a situation in which there are
many direct relationships.

The important thing to notice with the example above is that "reactor has overheated" is equiva-
lent to "temperature > 4000"". There is no question that if the temperature exceeds 4000" wheth-
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er overheated is true or not. In cases where there is not a direct relationship, rules require more

information. For example, the fact, "Trees have leaves," may be converted to a rule as:

If an object is a tree then it has leaves.

As above, this rule equivalences "object is a tree" with "it has leaves". This, however, is not al-
ways true. Is a cactus, for example, classified as a tree? Are pine needles classified as leaves?
Is it winter? Clearly, leaves are an attribute of some, but not all trees. Depending on whether the
object of the rule is to classify leaves or trees, two different "frame-like" approaches can be
taken. Assuming leaves are to be classified, the following attribute oriented rules may be used.

If an object is a tree then it has leaves with certainty factor 85%.
If an object is a bush then it has leaves with certainty factor 60%.
etc.

Of course, these rules assume tree and bush are already defined, or that "object is a tree" is a con-
clusion of some other rule so that backward chaining may occur.

If tree is the object to be classified, then, as above, exceptions to the fact "Trees have leaves"
must be investigated. For example, bushes have leaves, flowers have leaves, etc. Thus, an ap-
propriate "frame-like" rule for classification of trees would be:

If an object has leaves then it is a tree with certainty factor 60%.
If an object has bark then it is a tree with certainty factor 95%.

This "frame-like" approach consists of a list of attributes, possibly as rules, that drive a certainty
factor toward one extreme or another. One advantage of this method is that frame attributes need
not be all inclusive. Only enough attributes need be included to define an object well enough
that it can be differentiated from other object frames. Thus if a system consisted of only two
frames, as few as one attribute per frame would be required, if those attributes were mutually ex-
clusive. For example, if the system were to classify trees and bushes, the attribute "has leaves"
would not be sufficient to differentiate the two classes.

The present implementation will be seen to combine aspects of both rules and frames. Here,
rules are used to implement the geometric and radiometric descriptions of the signatures of each
type of terrain feature which is either desired, or similar to those features of interest. In this way,
each major terrain feature has its own frame. Each type of potential feature interpretation will
have a numerical score which was computed using the evidence presented. The preferred inter-
pretation will then be for the feature with the highest score.

3.1.2 Serial Invocation of Expert Systems

Another methodology for approaching this classification problem concerns a system in which ex-
pert system modules are called in series for each feature type to evaluate a portion of the image
data which had been previously cued by procedural interest operators. In this case, there would

-7-



have to be a separated expert system module for each different feature type. Again, a numerical
score would be used to find the probable interpretation of the evidence extracted from the imag-
ery.

Such an approach may have advantages in modularity, but is not as easily able to accommodate
knowledge which cuts across possible interpretations. One could conceive of rules whose pre-
mises include the uncertainties associated with conclusions of alternative interpretations.

For example, one such rule might be:
If (score(interpretation A)+score(interpretation B)) (score threshold) then

update the score for interpretation C by certaintyfactorpc.

3.1.3 Multistage Expert System Evaluation

Another heuristic which has not been employed in the present system is the potential dependence
of a given interpretation in one image region on that obtained in another region. For example,
roads are part of connected networks which are not isolated from each other. Generally, one can
travel from one road to any other in a region.

Therefore, one could imagine a situation in which the interpretation for a feature f, as being a
"road" is ambiguous in region Rl , but very strong for feature f2 in region R2. If a connected
path of "road" can be subsequently found to connect fl with f2 , then the strength of interpretation
of "road" for f, should strongly increase.

Because of time limitations, such a strategy could not be considered for the Phase I effort.

3.1.4 Numerical Evaluation for Possible Interpretations

Clearly, all conclusions based on measurements have inherent uncertainties. In this system, most
individual measurements will only contribute a marginal amount of evidence toward a particular
interpretation for a previously cued, potential feature.

It is not clear how human aggregate partial evidence and come to a conclusion. Certainly intro-
spection does not reveal any numerical basis for such processing, even if there is one. However,
most evaluation methods used in Al use some type of numerical computation.

One notable exception is a non-numeric logic for manipulating sentences containing qualifiers
that is described in [Halpem et al, 87] and [Fagin et al, 881. However, there are still considerable re-
maining technical problems for this approach.

Therefore, we have preferred a method for incrementally accumulating numerical scores of mul-
tiple interpretations for image features as more images-based evidence is obtained. This method
is a modification of the heuristic certainty factors used in MYCIN, [Shorfliffe, 76], and is discussed
in section 3.4.1 along with other methods.
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3.2 Orthogonal Knowledge Framework

The rule development effort used a two-pronged approach. Initially, the effort was concerned
with the development of a breakdown of the areas of knowledge to be addressed in the rule base.
Secondly, we approached the identification of features of interest with respect to similar features
likely to be visible in the SAR that would compete with the desired features. These two methods
are independent means of organizing the knowledge. As a result, the two can be used to create
an orthogonal structure that divides up the knowledge of the system into very exact niches. The
next two sections describe the two orthogonal methods.

3.2.1 Knowledge Breakdown by Attributes

The initial breakdown by attributes proceeded by identifying rule divisions for SAR scenarios.
The assumption here is that in the future, the knowledge base may incorporate types of images
other than SAR for automated target recognition. Under each sensor scenario, the areas of
knowledge are successively broken down until only the properties of each sub-area are listed.
For example, under the imaging physics of the SAR scenario, the properties include: wavelength,
resolution, signal to noise ratio, look angle, squint angle, etc. This list of properties constitutes
the leaves of a the organization tree. It is at the leaves, only, that knowledge oriented rules are
placed.

Rules can then be added to each leaf using only the properties of that area. The effects of the
instantiation of each rule are also limited to the appropriate leaf or nearby leaves with
intersecting properties. If there are likely to be many rules that incorporate more than one area of
knowledge, new leaves are created in the organization for them. Through this methodology,
fewer rules are repeated, and fewer conflicts occur as the size of the rule base increases. This
breakdown for the prototype is shown in Figures 3.1 to 3.4 Rules may exist at higher nodes in
the tree, but such rules would affect control of the chaining mechanism between knowledge
rules, rather than the actual knowledge itself.

After the initial development of the top-down rule organization just described, several meta-rules
were developed that used the physics of the imaging scenario to extract further knowledge from
the imagery and current information. A meta-rule, is an assemblage of bits of knowledge into an
if-then-else format. Generally, it is not possible to directly use or encode meta-rules since it may
include non-exact terminology such as "if the feature is characterized by a partially curvilinear
signature then ... °°. Clearly, terms such as partially and curvilinear must be defined in a
quantitative manner, and the rule must be refined such that it succinctly determines the
requirements. But, the use of meta-rules provides an initial means for qualitatively defining
measures of information. Meta-rules can generally be coded into an expert system using one to
six actual rules. A complete explanation of all rules and their reasoning basis is given in section
5, but for illustration an example of an initial meta-rule and its reasoning is given below:

If (indicated region is characterized by a bimodal histogram) and
(the statistically darker region is characterized by a closed contour
or
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a contour that intersects the down-range edge of the region)
Then (shadowed region is confirmed) and

(vectorized border of the region can be defined).

The reasoning behind this rule is that a shadowed region in a SAR image is characterized locally
by a bimodal histogram. The identification of shadowed regions is important in the identifica-
tion of roads because terrain highlighting effects associated with ridges or mountains are often
adjacent to shadows. Because of their bright signature and linear characteristic, terrain highlight-
ing effects may be confused with road features by the knowledge system. As a result, if a candi-
date feature is adjacent to a shadow along a large percentage of its length, that feature can rea-
sonably be classified as a terrain effect.

3.2.2 Knowledge Breakdown by Feature Type

Another method for organizing rules that recognize a small group of features in a SAR image is
to identify all types of signatures visible in the image that might be similar in some way to the
desired features. In particular, certain image processing functions are likely to identify some
competing features along with features of interest. This organizational method concentrated on
determining which characteristics of features impact the segmentation of various image
processing procedures. For example, global intensity thresholding is likely to segment terrain
highlighting effects as well as divided highways. But, terrain highlighting effects are also likely
to be adjacent to shadows, and divided highways may be characterized by local regional contrast

This method seeks to identify the fact that divided highways and terrain highlighting effects are
similar competing features. In addition, it is noted that adjacency to shadow, and local regional
contrast are image processing routines that can differentiate between the features, while global
intensity thresholding, for example, cannot.

Along this line of reasoning more than 20 target features were identified, and 28 distinguishing
characteristics were identified. The features were identified both from the test images described
in section 6.1, and from a catalog of digital feature analysis data (DFAD). The geometric
signatures, textural and other characteristics were cataloged. Subsequently, distinguishing
characteristics were codified from the signature descriptions and relationships between these
characteristics, the target features, and the required image processing sub-systems were
identified. Each distinguishing characteristic was identified to be associated with each feature on
an always, usually, sometimes, rarely or never, basis. See Table 3.1. This methodology provided
a non-binary measure of the usefulness of each characteristic with respect to identification of
each feature. Then when each characteristic was associated with an image processing function.
The procedural definition of the system was completed for all named features. That is, the image
processing procedures were defined that could be used to distinguish each of the 20 selected
features. Table 3.2 shows the relationship between the image processing routines, and the
distinguishing characteristics.

-10-



4)
C,,

4)

'0
4)

0

4)
* -

U
4)

0
U

4)
U
0

4)

Figure 3.1 Initial breakdown between knowledge and control.

-1)-



Cd~

* -

44-

0~

4))

rCOD

(U,

-12--



-0

4--

Figure 3.3 Organization of SAR Scenarios by areas of knowledge.



4-A

1-4
4)4

0'

'00

00

Cu
0

0~' C.)r

V-4)

C~CO

Poo-4

.14)

Figure 3.4 Organizational breakdown of feature specific knowledge.

-14-



Table 3.1 Relationship between distinguishing characteristics and feature classes.

Legcnd
X =always 2 A

4 = usually
0= sometimes

=never .
inconclusive . Q

L =lowH = high 0
H=~7g

cloverleaf interchange x x + L 2 X 201+1 01 - 0
limited access interchange 4 i1 11?x 2 *I 0
trumpet interchange 4 00 L X 2 1-0! 1x
urban grid X 00050-x 2x X XI+
cross intersection x 0 0 1 X 2 0 1
T intersection X 000o55 r 2 0 - +_ 4
traffic circle 4000000 1 1 + I-4i+ +

forest road 0 I
secondary road OX 00 LV 2 + +
divided highway
div. hwy. w/serv. rd.
causeway 5T
road and river 0 2
dam and road + 55 -- 0 -
lake and road 00 0l0o 9
crops and road x c

aiport 0Mre boundary 0 0 1 1 1 1 7 1 I I 1 1
crop boundary X0 -1 I 11
river 0
river confluence 0
clear cut
transmission line x
canals
aquaducts
swampy region 0 X16-
shoreline x I

terrain higlighting effects ISAlt shadow ×_A _ --- 1IX
antenna side-lobe effects x
speckle
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Tab 322 Relationships between image processing primitives and feature
distinguishing characteristics.

9 IF

x x curvilinear

X X gravel
x X asphalt

X X concrete

X X dir

x _ x stone

X X brick

X X water content

X X #lines

X x small std. dev. (avg spacing)ftsolution

x x length
x X # of lanes of each line

X orientation with compass direcitions

x motion
X local contrast

x edge gradient
X intensity of backscatr

x small std. dev. of intensity along feature

X bimodal histogram

X Rayleigh distributed histogram

X odd # bounces

X even # bouncs

X X high density of comner reflectors

X X X dark lines in clutter

X X dark rgions in clutter

X X adjacent to shadow
X interconnections
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Next, a rule structure was developed that dynamically initiated image processing as necessary to
affirm or deny that a cued object was a feature of interest (road). To accomplish this, each image
processing function was ranked according to its impact on the probability of determining the
classification of a cued feature. From this ranking, rules were formed that impacted the
likelihood of classification. For example:

If (feature avg. intensity is greater than a given threshold) and
(cued feature consists of a single linear signature) and
(feature is adjacent to a shadowed region)

Then (likelihood cued feature is a terrain effect) should be increased
Else (likelihood cued feature is a terrain effect) should be decreased.

These rules were ordered from most important to least important for each feature. For the
prototype system, six features were selected from the larger group. The selected features were
ones that were likely to compete, and to provide a good test for the formulation of the knowledge
system. The six selected features included three road features and three competitors, as follows:
urban road grid; divided highway; unimproved road; terrain highlighting effect; agricultural field
boundary; and transmission line. Using the preferentially ordered image processing routines and
measures of the characteristics associated with each, a decision tree structure was created to test
each cued feature under all possible circumstances. Various paths through each decision
structure resulted in differing likelihoods of classification for each selected feature type.

The decision tree structure for the divided highways is shown in Figure 3.5, other decision trees
are shown in the Appendix. Paths through the decision trees are determined by the Boolean
value of the result of each test. TRUE results result in downward sequence, FALSE in sequence
to the right. Note that the same tests are executed regardless of TRUE or FALSE evaluation,
but that the rule strengths, and therefore the updated certainty factor at each point are different.
Figure 3.5 provides a useful tool in the development of a rule structure in that it indicates the
required image processing sub-programs required for each test, and the rule strengths to be
assigned to those tests to update the certainty factor.

The decision trees were used to create a prototype rule network shown in Figure 3.6. The proto-
type system consists of six layers corresponding to each selected feature class. Depending on the
value of the rule strength for each rule after it is instantiated, one of two paths may be taken. The
processing may continue evaluating the current feature, or it may chain into the evaluation
sequence of another feature. The ordering of the layers in Figure 3.6 is arbitrary, and in the
actual prototype implementation, the inference engine is free to chain to any connected rule at
any time. This means that it can evaluate the likelihoods for several features at the same time
chaining from rules concerning divided highways, for example, to ones concerning transmission
lines and back again. A more concise description of the reasoning behind each rule and the ar-
chitecture of the prototype rule system are described in Section 5.
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3.3 Control Executive

The Control Executive is the supervisor of the rule/procedure system. The control module
handles all interaction between the reasoning system and the image processing modules. In
addition, it is the control executive that is responsible for system level interactions of the
knowledge base. That is, it must handle memory allocation, memory I/O, and disk I/O for the
rule system. When the rule system requires information from image processing routines, or other
files on disk, it sends a message to the control executive which then, procedurally, carries out the
request and returns the required information to the rule system. This requires that the control
executive be able to extract information from and place it into the registers of the rule base.

The requests from the rule base can be encoded simply, by using a lookup table of codes. For
example, when the Sobel edge detector must be called, the rule base may pass a simple
numerical code to the control executive module. At that point the control executive may use the
code to look up the appropriate procedure. The procedure will then extract any necessary data
from the knowledge system, call the image processing subroutine, write the required information
back into the knowledge base, and signal the knowledge system of successful completion.

Section 3.3.1 describes the Nexpert Control System that was used during the Phase I effort, and

Section 3.3.2 describes the proposed control executive to be used in the Phase I effort.

3.3.1 Nexpert Control Executive

The Nexpert Object 1.1 development system consists of a framework in which knowledge can be
encoded into rules in a simple if (hypothesis) then (conclusion) format. In addition, the Nexpert
Development system provides the means for interacting with the user, directly executing external
functions including C or FORTRAN subroutines, forward and backward chaining during a
reasoning process, suggesting or volunteering data, and monitoring the execution of the system.
In short, much of the functionality of the control executive discussed above is built into the
Nexpert Development environment.

Unfortunately, Nexpert does not provide all of the functionality of the required control executive,
nor does it provide the flexibility required to implement the necessary rules for evaluation of the
knowledge system as designed under the Phase I effort. Specifically, Nexpert does not provide
an else mechanism, and the knowledge designer cannot precisely direct the reasoning process to
follow a set of steps by chaining to specific rules in the system. As a result, the Phase I
demonstration system is limited in capability compared to the actual system that would be
pursued in Phase H. Also, the use of the Nexpert environment required some relatively awkward
work-arounds to create a feasibility demonstration for the Phase I effort.

The method by which Nexpert handles control is determined by the conclusions in the format if
(hypothesis) then (conclusion). In addition Nexpert provides the option to create rules using the
format if (hypothesis) then (conclusion) and do (procedures). In this way, when a rule is
instantiated TRUE, a set of procedures can be executed, or variables can be assigned. It is by
this mechanism, that the certainty factors for each rule are updated. Unfortunately, the
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procedures are not executed if the rule is instantiated FALSE, and chaining to another rule in
particular cannot be indicated in the procedures. Thus, if conclusion B and its associated
procedures must be executed if Rule A is false, other rules are required that contain all converses
of A with the conclusion B. For example, to implement the following rule:

If (proc a is true) and
(proc b is false) and
(proc c is true) then

A is true and do x, y and z
Else

B is true and do uy and w.

The following rules are required in Nexpert.
If (YES proc a) and (NO proc b) and (YES proc c) Then A and do (x, y, and z).
If (YES proc a) and (NO proc b) and (NO proc c) Then B and do (u, v, and w).
If (YES proc a) and (YES proc b) and (NO proc c) Then B and do (u, v, and w).
If (YES proc a) and (YES proc b) and (YES proc c) Then B and do (u, v, and w).
If (NO proc a) and (NO proc b) and (YES proc c) Then B and do (u, v, and w).
If (NO proc a) and (YES proc b) and (YES proc c) Then B and do (u, v, and w).
If (NO proc a) and (NO proc b) and (NO proc c) Then B and do (u, v, and w).
If (NO proc a) and (YES proc b) and (NO proc c) Then B and do (u, v, and w).

The only way chaining occurs in Nexpert is by including the conclusions of rules in the
hypotheses of others. Therefore, to enforce a particular series of steps, each rule must check for
a Boolean value indicating that the previous rule was executed. For example:

If (proc a is true) and (proc b is false) then C is true.
If (C is true) and (proc d is false) then D is true.

Thus, the second rule cannot be instantiated until the first is checked. By this method, we have
implemented a particular set of steps for each test within the knowledge system. As a result, the
knowledge system will dynamically execute image processing routines as necessary to determine
the likelihood that a feature is of interest. But the knowledge processing will follow logical
progression of tests when considering if the feature fits a certain description rather than chaining
across different tests and unnecessarily executing image processing routines.

It is important to note, however, that if some data is unknown then its conclusion also will be
unknown causing all conclusions in forward chaining to be unknown, as well. For example, in
the 8-rule set above, if the results of proc a are inconclusive (ie neither TRUE nor FALSE), or
proc a is not available, its value in Nexpert will become NOTKNOWN. When this occurs, all
conclusions in the forward chaining direction that utilize the conclusion from proc a will also
become NOTKNOWN. Since the knowledge system is organized into sets of tests that are
executed in a predetermined order, one NOTKNOWN will result in an inconclusive result for an
entire layer. This problem is another significant limitation of Nexpert for this application.

Due to all the limitations and difficulties with Nexpert, the design of the rule base did not include
complete converses of each rule, as described in the 8 rule set above. Each rule was encoded so
that only one measured quantity was checked. Specifically, a rule may contain several Boolean
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values of the form " execute procedure A = TRUE". Such a statement would produce a prompt
to the operator of the form: "What is the value of execute procedure A?". This prompt indicated
to the operator that the knowledge base required procedure A to be executed on the current
candidate feature. After running the image processing procedure, the operator entered TRUE,
and the knowledge base then prompted for a measured result from that procedure. Thus, only a
partial converse of each rule was encoded. For example, the rule:

If (execute local contrast) and (contrastsigma sigma_threshold) then grid_1 TRUE.
would have only the partial converse:

If (execute local contrast) and (contrastsigma < sigma_threshold) then grid_1 FALSE.

This methodology implies that all image processing capabilities will be available for all cued
features. Unfortunately, this is not always the case. Polarimetry procedures, for example, are
only available with multi-polarized SAR imagery. As a result, special rules were implemented to
handle situations that may occur in testing the prototype involving certain image processing
functions. These functions include polarimetry, DEM analysis and region growing capabilities.
The special rules simply provide more complete converses to handle the event of the hypotheses
evalimage_processingroutine are set to FALSE. Note, this situation is due to a limitation in
Nexpert, and will be compensated in Phase II by using a different development system.

In keeping with the proof of concept mission of the Phase I effort, the user acted as a procedural
control executive, and Nexpert acted as the symbolic controller using the rule chaining
methodologies described above. The operator evoked the knowledge processor for each
candidate feature extracted by intermediate image processing steps. In Phase II the control
executive will be automated, but for the prototype a human operator carried out the procedural
steps. The user began by collecting a finite amount of data concerning the SAR situation and
other data about the image to be investigated. Then, based on the input information, an initial
image processing based segmentation was executed to produce a list of candidate segments to be
investigated by the rule base. The operator then activated the rule base for each candidate
segment in turn. Once the inference engine was started, it prompted the operator to run certain
image processing sub-systems to validate or add data as necessary. The result of each activation
of the inference engine was to assign a numerical score as to the likelihood of each candidate
segment being part of a road, or competing feature.

3.3.2 Proposed Phase II Control Executive

For Phase II, an integrated image processing and expert system development environment is de-
sirable. One result of such an implementation is reduction of the integration task required for a
rule-based system to communicate automatically with the image processing environment. For
Phase II we propose to use the KBVision System by Amerinex Artificial Intelligence, Inc.
KBVision combines a comprehensive library of image processing and image understanding sub-
routines with higher level Lisp programming in a Unix', X-Window System2 environment.

By using the Lisp programming language, we will be able to develop a custom inference engine

1. Unix is a trademark of AT&T Bell Laboratories.
2. The X-Window System is a trademar of Massachusetts Institute of Technology.
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for the task of automated classification and change detection. Rather than trying to improvise
with a rule environment suited to a different task, we will develop custom applications and a
frame-based implementation of the classification knowledge for specific feature types. In addi-
tion, since this system will become a module of our hyper-spectral registration and change detec-
tion procedural workstation, additional rules will be developed that take advantage of hyper-
spectral image data.

KBVision is a multi-layer tool consisting of: a set of conventional image processing tools, a li-
brary of higher level image understanding sub-systems, a relational feature database in which
token attributes are defined by the user, and a Common Lisp programming environment
KBVision is an open system providing for user extension at all levels. In Phase n we will incor-
porate hyper-spectral registration and change detection algorithms, and add custom C code pro-
grams implementing new algorithms for sub-pixel registration. The Lisp programming environ-
ment has direct access to the feature database, and can execute any procedural subroutine in the
system. Thus, the control interface between the image understanding, registration and change
detection, and the expert system is invisible in KBVision.

The Phase H1 knowledge processing module will have an interactive multi-color graphical user
interface. The frame-based expert system will operate in concert with the user, highlighting pos-
sible targets according to the likelihood derived from the encoded domain knowledge. Features
will be marked by colored outlines for clear identification by the operator. On a Unix platform,
the expert assistant will carry out multiple decision tasks simultaneously providing dynamic
screen updating of the information as it is processed. Since Unix is a multi-tasking environment,
the operator may monitor automated processing of the expert system, or pursue other tasks. At
any time, the user will be able to intervene to correct or add data to the Lisp processor.

The architecture of the knowledge module will provide for expansion so that knowledge bases
for various feature types can be added to increase the functionality of the system. The Phase II
effort will concentrate on development of a knowledge base for identification and classification
of roads in hyper-spectral imagery. This development will draw heavily on the Phase I rules for
road-type features in SAR imagery. Additional rules will be added to take advantage of hyper-
spectral data sources. Provision will be made to handle additional rule systems in Lisp for other
feature types.

3.4 Scoring Function

During the reasoning process there is a requirement to keep track of the outcome of each rule
with respect to its importance to probability of interest. The issues and methodology explored
during the Phase I effort are discussed in section 3.4.1, and the actual method used in the
prototype is discussed in section 3.4.2.
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3.4.1 Issues and Methodology

This section addresses the problem of how to systematically handle the uncertainties which occur
during the rule-based processing described above. One source of uncertainty is that in practice
such processing does not work with perfect inputs. Another is that most rules have exceptions,
and it is often impractical to enumerate all exceptional circumstances. Therefore, the conclu-
sions of rules often are couched in probabilistic or "probability-like" terms.

Incremental, stage-wise computations require independence among the predicates being com-
bined to allow straight-forward probabilistic computation. Unfortunately, this is rarely the case
unless the rules are specially organized into a tree structure. Therefore, Bayesian updating is
often abandoned by many AI systems in favor of heuristic, but more computationally feasible
constructs such as certainty factors. These concepts and their modifications will be discussed
below.

3.4.1.1 Taxonomy of Methods

One taxonomy for the various methods of handling uncertainties divides them into intensional
and extensional systems. Extensional systems are usually production systems, ie. rule-based, or
procedure-based. Intensional systems are more declarative-based systems.

In an extensional system, uncertainty is represented by heuristically derived "truth values". The
formula for uncertainty is given as some heuristic function of sub-formulas. An example are the
certainty factors used in MYCIN [Shortliffe, 76].

Intensional systems consider uncertainty more rigorously. A calculus of subsets of possibility, as
in the usual theory of probability or generalizations such as Dempster-Schafer or Fuzzy Logic, is
the model in that case.

The trade-off between the two formulations is that extensional systems are computationally con-
venient but can be semantically sloppy. Intensional systems, on the other hand, are semantically
clear but can be computationally difficult and awkward.

However, this classification is somewhat misleading since rules can be implemented in either
way, with differing interpretations of a rule's strength, ie. A -+ B with strength m. In the exten-
sional scenario, the conclusion of a rule, B, has its certainty factor updated by a function of the
rule strength, m.. Here, rules should be interpreted as the summary of past performance by
agents or experts. The conclusions are reactions to problem situations or evidence.

On the other hand, intensional systems interpret rules not as past decisions but as factual con-
straints. Two typical ways of handling uncertainty in this context are Dempster-Schafer and
Bayesian. The latter interprets m as a conditional probability of B given A, ie. p(BIA). Demp-
ster-Schafer, on the other hand, does not make quite such a strong statement, but instead only as-
serts that the proposition [A and -,B] is possible but is excluded with probability m.
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3.4.1.2 Extensional Systems

Rule-based systems exploit the property of modularity, which consists of the desirable proper-
ties of locality and detachment. The former refers to the capability to force conclusions based
on the rules at hand, regardless of other information. This is distinct from probability theory.
For example, p(BIA) potentially changes once K is known, ie. p(BIA) must be replaced by
p(BIA,K) unless there is a verification of the irrelevancy of K. Detachment refers to the indepen-
dence of a conclusion from how it was derived.

The deficiencies of extensional systems stem from an inability to mirror some of the more subtle
forms of plausible reasoning. One such missing item is bidirectional inference. A subtle occur-
rence of this phenomena in human discourse is abduction.. For example, if
A-+ B and B is subsequently known to be true, then A is somewhat more credible. In a rule-
based system, this would lead to A-4 B, followed by B-+ A, ...etc.

Another example from discourse is explaining away., ie. A-+ B and C-- B, and later the fact that
C is found to be true makes A less credible. To avoid such cycles, rule-based systems simply
prohibit bidirectional inferences.

The ability to retract conclusions is also missing from extensional systems. If A-+ B and A is
thought to be "true" enough to instantiate B with some measure of credibility, then no subse-
quent evidence can undo this conclusion.

Finally, there is an inability to properly sort out correlated sources of evidence. For example, if
A-+ B, C-+ B, and both A and C are found to have some measure of credibility then the conclu-
sion for B will increase even if A and C stem from the same cause.

The following are examples related to the present surveillance problem which illustrate some of
the more subtle deficiencies of extensional systems:

ENaWlIe #1 (Limits of Modularity): The following example illustrates that plausible reasoning
cannot always ignore the rest of the body of rules and proceed using only locally available rules.
Those rules which can potentially change the conclusions are sometimes called suppressors, or
competitors for interpretation in our present scheme for surveillance from SAR imagery.

Suppose that an image contour is smooth and corresponds to another similar contour, with the
width between them about equal to the width of a multiple-lane road. However, a decision must
be deferred since it is possible to obtain further measurements using double-bounce polarimetry,
supporting the possible existence of a canal or forest line.

The nearby existence of a canal or forest line neither confirms nor eliminates the possibility of a
road at the site in question. However, the nearby existence of trees, if confirmed, should some-
what undercut the road hypothesis.

L&a.le #2 Bidirectional Inference): These examples illustrate that the tes of predictive and di-
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agnostic information can be important, while their misuse can cause problems.

Abductive reasoning is a normal part of discourse: if A-+ B, then finding B = true makes A more
credible. Humans are able to do this both ways: the presence of a road would imply the physical
alteration of the surround, and the existence of the second makes the first seem more credible,
though certainly not conclusive.

However, extensional systems require the explicit statement of the latter implication and removal
of the former to avoid cycling.

MYCIN permits only diagnostic reasoning and no predictive inferences. However, removal of
prediction prevents explaining away, another subtle form of discourse: A-+ B, C--- B, B and C
are found to be true, making A less credible.

For example, finding evidence that an irrigation canal contributed to the alteration of a physical
surround makes the existence of a road less credible, though not conclusive since the two could
coexist.

Another situation is that of an antecedent becoming more credible and thereby causing the conse-
quent to become less credible. For example, suppose a very noisy, and thus somewhat ambigu-
ous, double-bounce polarimetry test indicates a possible boundary between single and double-
bounce returns in a region which is known from previously available thematic maps to contain a
forest. The polarimetric boundary may be a forest line. However, further processing indicates
that in an adjacent region in the image this same noisy test result was triggered by a crop bound-
ary, whose existence was confirmed by other more conclusive tests. There is now more credibil-
ity in the existence of a polarimetric boundary, but less credibility in the existence of the forest
line because of an alternative case nearby.

EmWle (Multiple/Correlated Sources of Evidence): Normally, multiple sources should cor-
roborate conclusions and increase credibility of the conclusion. However, discovery of a com-
mon origin does not justify an increase in credibility.

For example, a number of rules of classification using polarimetric data depend on statistics of
the parameters of the polarization ellipse. Suppose each one of these indicates the possibility of
a certain region being agricultural crops as opposed to scrub vegetation. Care must be taken to
avoid having these rules reinforce each other since they all stem from the same derived polari-
metric parameters.

Many remedies have been proposed for these deficiencies, especially the problem of correlated
sources of evidence. These include bounds propagation and user-specified combination func-
tions.

User-specified combination functions, such as certainty factors, represent an attempt to supply
an unambiguous rule for combination which substitutes for the lack of conditional probability in-
formation.
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Because most correlations are unknown, certainty factors are usually combined under the as-
sumption of high or low correlation. This results in upper and lower bounds which are input for
later update computations. Unfortunately, this usually results in the unchecked expansion of
such bounds into un-meaningfully large intervals.

More subtle problems, usually ignored, include higher-order dependencies which may be needed
beyond pair-wise correlations. Finally, the subsequent occurrence of new evidence may itself
dynamically create or destroy dependencies. The application of certainty factors to the Phase I
prototype rule system is discussed in section 3.4.2.

EWle (Monotonicity): A more fundamental problem with rule-based logic is its monoto-
nicity , ie. the inability to reverse degrees of belief. One example of this dilemma is the tension
between property inheritance for subclasses and subclass specificity. For example, "urban roads
are smooth", "smooth roads exhibit specular reflectivity", and "an urban road undergoing refin-
ishing is an urban road" would lead to the conclusion that "an urban road undergoing refinishing
exhibits specularity". However, such refinishing usually creates surface roughness, as a by-prod-
uct of the removal of the upper layers from grinding, on the order of SAR wavelengths. There-
fore, such a subclass of roads does not necessarily inherit the specularity property of the parent
class, and subclass specificity should dominate.

Latrwf5 (Predictions triggering explanations): This example concerns problems with causal
reasoning which occur when predictions trigger explanations. For example, a road leading into
an agricultural field suggests that a strong edge signature will be present. The presence of a
strong edge in an agricultural region suggests a possible irrigation canal. However, the presence
of a road should not suggest an irrigation canal.

This monotonicity problem cannot be treated by the addition of probabilistic grcy-values interpo-
lating between true and false. The real source of the problem lies in the transitivity property of
rules, ie. A -+ B, B -- C, therefore A -- C.

Because of such difficulties, research has been directed toward new interpretations of the "if-
then" paradigm. One recent example is circumscription [McCarthy, 86]. This system uses only
probabilities which are either infinitesimal, 1 minus an infinitesimal quantity, or an intermediate
value. Such an approach to logic seems very interesting and may yet prove promising in applica-
tions.

3.4.1.3 Intensional Systems

Belief networks are intensional systems which are practical and workable. Relevant facts are en-
coded as neighboring nodes in a graph. In this way, facts or information that need to be ignored
can easily be recognized as such since they are not represented by neighboring nodes. On the
other hand, relevant facts or information are immediately available. Examples used in practice
include: frames, scripts, causal chains, inheritance hierarchies.
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These structures are used in practice, although "pure" logicians don't consider them general
enough. However, such structures allow the focus on a narrow problem domain which repre-
sents the only "successful" approach to Al so far.

Another workable, intensional system type is graphoids. The advantages of this graph-oriented
structure include:

- irrelevant facts don't alter relevant relationships,
- compatibility with probabilistic dependencies,

A possible disadvantage is that such a structure requires causal, ie. recursive, construction.

Probability theory, including Bayesian updating, as a representation and calculus of uncertainty
has its adherents and detractors in the field of Al. This has been an area of great controversy.
Some of the disadvantages claimed by detractors include:

- "epistemologically inadequate" [McCarthy et al, 69],
- requires full knowledge of all relevant distributions,
- humans are notoriously bad estimators of probabilities,
- requires knowledge of relevancies/irrelevancies when updating,

However probability theory has many strengths, including:
- rigorous and well-understood,
- not just a calculus but represents "structure of reasoning",
- can process belief measures using contextual information,
- context dependent information can be represented by graphs,
- probabilities on graph structures can be changed by local propagation strategies.

The primitive concepts of probability theory which support structured reasoning are:
- likelihood

- H P(elH)
L(eH)(e.,H)

is likelihood ratio,
- formalizes the notion of one event being more likely than another,

- conditioning

- P(alc) = P(a,c)
P(c)

-which allows:
- non-monotonic reasoning,
- formulation of degree of beliefs via context,

- relevance which allows change of belief guided by changes in knowledge,
- causation which supports notions of:

- non-transitivity,
- induced dependencies,
- asymmetry to identify causal directionalities in non-temporal data.

At this point, generalizations on the relationship of some systems to probability theory are inter-
esting. It is a theorem [Heckeman, 86] that any system which updates certainty weights in a modu-
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lar, consistent fashion has a probability interpretation, ie. the certainty update function is a func-
tion of the likelihood vector L(eIH) given above. For example, the certainty factor, CF, in
MYCIN, can be given as:

CF= L(eIH) - 1
L(eIH) + 1

Moreover, any system of such rules producing coherent rules must be equivalent to a directed
tree. In this case, no two rules stem from the same premise.

A prominent, though controversial, non-Bayesian method for the representation and updating of
uncertainties is the Dempster-Shafer (D-S) calculus. It represents an attempt to construct a
model for computing with uncertainty without requiring specification of all conditional probabil-
ities, which is one of the major difficulties with using the Bayesian approach.

The D-S formulation handles partially specified probabilistic models, and does not need to com-
plete the model. Instead it is able to compute with the evidence available, generally keeping
some evidential weight uncommitted.

Briefly, let m( ) be a basic probability assignment (bpa) defined on the subsets of 0, called the
frame of discernment. Then:

m: 20 - [0,1]

m(A) = strength of argument supporting proposition A,

0 <m(A) 1, m(O) = O,

Y, m(x)=I

A is called the focal element. Define a belief function, Bel(x) , over 0 by:

Bel(x) = m m(y)

y~x

Analogously, define:

P(x) = 1 - Bel(--x),
called the plausibility of x, is a measure of the probability that x cannot be disproven.

The interval [P(x)-Bel(x)], called the belief interval, represents the probability that both x and --x
are compatible with the available evidence. Unfortunately, this interval is often misinterpreted
as a measure of ignorance or uncertainty.

Dempster's Rule of Combination forms the basis for combining bpa's:
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ml $ m2 (x) = K { ml(xi)m2(x3 ) }

where the sum is taken over all subsets xi r yj = x, and

K = 1 - I ml(xi)m2(xj)

where the sum is taken over all xri yj =0.

The normalization factor K is introduced to retain the probabilistic aspect. It really represents
the total time spent in no-conflict with the given constraint x. However, this normalization is
also the source of certain problems to be discussed below.

Unfortunately, the combinatorics of the Dempster rule of computation can be exponentially com-
plex. Some recent research has been concerned with computationally tractable meth-
ods[Gordon et al, 85], [Shafer et al, 87]

Dempster's rule of combination leads to a hyperbolic shape for the graph of accumulated bpa vs.
number of sources of evidence accumulated, ie. the D-S method is a monotonic function of the
evidence presented. In particular, this means that if any piece of evidence ever imparts all of its
strength to a proposition and its negation, the belief interval will subsequently remain zero, re-
gardless of any further evidence.

In [Safranek et al, 90], a method is described which introduces constant parameters which control
the saturation effects of this monotonicity. They also provide a mapping which relates confi-
dence factors of image measurements to bpa's.

Because D-S only works with partial information, it generally provides only partial answers, and
some probabilistic queries cannot be answered. For example, it does not estimate the probability
that a given proposition is true. Instead, it essentially measures how close does the available evi-
dence force a proposition to be true, ie. the probability of provability.

However, this generally allows a proposition and its negation to be simultaneously true for some
percentage of the time. Also, D-S cannot incorporate conditional probabilities unless a complete
probabilistic model is created.

The D-S method has numerous other interpretations for how it assigns values to logical proposi-
tions, including message codes [Dempster, 681, multiple opinions of experts [Hummel et al, 881, de-
ductive databases [Zadeh, 861, as well as probability of provability [Pearl, 881. All of these notions
are distinct from the measure of truth or belief, or likelihood interpretation usually used in
Bayesian probability theory.

Available prior probabilities can be interpreted as random switch phenomena. Such a formula-
tion creates a separation between object level reasoning and meta reasoning, In [Pearl, 88] this
boundary is modeled by this external switch which imposes truth values for a proportion of the
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time equal to the given prior probability. Unfortunately, conditional probabilities cannot be
modeled by this switch.

Therefore, since D-S operates not just on an object level as does Bayesian reasoning, it repre-
sents hypothetical envisioning. But provabily rather than likelihood is the basis for formulating
questions in this hypothetical setting.

For real problems, the notion of provability may seem artificial. However, hypothetical ques-
tions about possible scheduling situations seem especially well-suited to this formulation. Such
questions inherently seem to involve two levels of knowledge - the compatibility constraints and
the available prior probabilities. The compatibility constraints generate object-level statements
which are assigned probability measures.

It may seem paradoxical that Bayesian probability, which works with more complete information
than does D-S, does not seem suited to such queries. However, this is because probability theory
is formulated only on a single object-level, while D-S requires the compatibility constraints to be
outside the probabilistic model.

The D-S method also suffers from monotonicity, and does not conveniently allow the retraction
of previously held beliefs given new evidence. This problem is a result of the normalization fac-
tor described above in the Dempster rule of combination.

Another problem is that in certain cases D-S overweights prior probabilities compared to the
Bayesian formulation according to [Yen, 891. Likewise, [Pearl, 881 gives an example using the fa-
mous "Three Prisoners Problem" where D-S gives extreme probability values compared to the
Bayesian approach.

In [Hummel et al, 88], the voting model of experts allows a Bayesian interpretation which allows
incorporation of covariance data. This interpretation and its connection with the notion of prov-
ability, deserves further research.

In conclusion, one may say that D-S represents an interesting attempt to circumvent some of the
perceived difficulties with Bayesian probability (see [Cheeseman, 851 for a spirited defense of prob-
ability). As discussed above, D-S has numerous conceptual and computational difficulties, and
such is not recommended in its present form for use in our system. However, it may become
useful in the future especially for scheduling problems and other inherently "multiple-lever'
problem formulations.

3.4.2 Algorithm Used for the Phase I Prototype

As the rules are fired, and the system progresses through a reasoning session, the accumulation
of knowledge concerning a particular feature must be stored in the system. A numerical scoring
function provides a probability-like mechanism for the user to evaluate at the end of a session.
The output then, indicates that a cued feature may be the feature of interest, such as a road, with
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certainty factor N%, and it may be another competing feature with a certainty of M%. N and M
would be large and small percentages, ideally. This method enables the system to produce
results that are non-Boolean, giving the user more of a feeling for the dependability of the
solution.

A numerically based scoring system must be defined by five important requirements. These
requirements are:

1. Given some initial certainty, pG, for a particular feature, each rule with a TRUE result
should increase p and each FALSE result should decrease p.

2. Successive TRUE results should monotonically increase p.
3. When there is a preferred ordering of the tests, earlier tests should have a more profound

effect on the final score, PN' than later ones. When there is no preferred order, the order of
execution of rules should not impact the final score.

4. With no initial data, the initial certainty, po for all features should be set to 0.5
5. The certainty factor for a TRUE result should be greater than 0.5 while the certainty for a

FALSE should be less than 0.5.

We can assign a certainty factor, PC, to each rule such that if the rule is instantiated (TRUE) then
the cued feature is a feature of interest with certainty PC" For example:

if (feature) is linear then it is a road with certainty p(road) = 0.8 else p(road) = 0.2.
This is adequate except that all certainties are not independent. Say for example that the given
feature was linear, and highly contrasting with its background. However, its background
consisted of a variety of circular objects. Clearly, the feature is contrasting with its background
to some extent because it is linear. Thus the two conditions are not independent. As a result,
conventional Bayesian probability techniques cannot be applied. For example:

iffeature is linear then it is a road with probability p(road) = 0.8 else p(road) = 0.2.
iffeature is contrasting then it is a road with probability p(road) = 0.6
else p(road) = 0.4.

Now assuming the initial probability p(road) = 0.5, and both rules are true, should the probability
p(road) be 0.8, 0.6, more than 0.8, an average of 0.5, 0.6, and 0.8, or some other value. Being
that the conditions are not independent, we cannot take each one as absolute and change the
probability as in Bayesian systems. Averaging the probabilities, dynamically will lead to an
increase, then a reduction in the probability. That is, the average of 0.5 and 0.8 = 0.65. Thus
after the first rule, p(road) = 0.65. Then if the feature is contrasting, the value of p(road) will be
updated to 0.633. We see that even though the result of the second rule was true, and the certain-
ty factor was greater than 0.5, the actual probability, p(road) was decreased.
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3.4.2.1 Order Dependent Score Function

One solution to these problems is to place the tests in a preferred order such that the most
important test is first, followed by the next most important, etc. Then an order dependent scoring
function can be used that consists of a weighted average of p0. all previous certainties, and a
derived certainty factor. The new certainty factor is derived from the nth iterated value of p, Pn'
and the percentage above p0 of the certainty factor PC. The derived certainty factor is the sum
of Pn and the computed percentage multiplied by the "room to grow (or shrink)" of Pn" See
Figure 3.7 The order-dependent update rule is as follows:

Pn+1 = (nPn + abs(nint(pc) - Pn)P a/ (n+1)

Pa = (PC" PO) / PO

where:
n = number of rules instantiated

Pn = certainty of the current feature after the nth rule has been instantiated

Pn+l = updated certainty after the current rule

PC certainty factor of the current rule

Pa - increase or decrease of current certainty factor based on PC

and:
O Pn 1,
0: _Pn+l '5 1

-1 <Pa< 1

Note the system can be taken one step further utilizing previously obtained certainty factors to
influence later ones. The certainties could then be carried through the system, for example:

if (avg curvature measurement 1.0) then p(linear) = 0.8 else p(linear) = 02.
if p(linear) > 0.75 then p(road) = (0.8+p(linear))12
else ifp(linear) < 025 then p(road) = (0.2 +p(linear))12.

This rule provides a gray area between definitely linear and definitely nonlinear. If the linearity
falls between the two thresholds, p(road) is not affected at all. Similarly, values returned from
image processing subroutines, such as an intensity threshold to test for terrain effects, can be
used to directly impact the certainty factors for that rule. For example:

if (percentage of pixels above threshold, pa > 50%) then p(terrain effect) = pall00
else p(terrain effect) = 0.5.

Note, this rule provides a variable certainty factor on TRUE, but will not affect the derived
probability on FALSE.
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Figure 3.7 Graphical explanation of scoring function.

To better understand the effect of the scoring function on the final certainty factor given varying
rule certainties, the function was tested under a variety of conditions. The first of the general
requirements outlined above states that each TRUE result should increase the score and each
false should decrease it. Thus, if a series of perfect certainty factors (1.0) were introduced, the
function should increase monotonically. This behavior is illustrated in Figure 3.8. Similarly, a
series of 0.0 certainty factors should cause the function to monotonically decrease. See Figure
3.9. The response of the scoring function to a random series of conditionals is shown in Figure
3.10. Figure 3.11 illustrates the order-dependence of the function. In Figures 3.7. through 3.16,,
the solid black squares indicates the certainty factors for each rule, and the open squares
indicates the updated factor.
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Figure 3.8. Behavior of order-dependent scoring function given perfect conditionals.
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Figure 3.11 Illustration of order-dependence of scoring functm. Note the certainty factors indicated by
black squares appear the same number of times, but in different orders in (a) and (b).

3.4.2.2 Order Independent Score Function

Another scoring method, which is order-independent, involves using the rule certainty factors in
a non-averaging algorithm. The medical expert system MYCIN uses a scoring algorithm similar
to the one presented above, but without weighting rules according to order.
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Recall from section 3.4.1.1, order-independent scoring functions based on certainty factors repre-
sent an attempt to supply an unambiguous rule for combination which substitutes for the lack of
conditional probability information. This usually results in the unchecked expansion of such
bounds into un-metingfully large intervals.

We illustrate some mathematical difficulties with the usual definition of certainty factors given
in MYCIN [Shoriffe, 76]:

Given two certainty factors Pn' Pa' the new, updated certainty is given by the rule:

Pn+1 = :

Pn + (1 -PnPa Pn' Pa > 0
Pn + ( 1 + PnPa Pn' Pa < 0

(Pn+Pa)
(1-min(pn,pa)) PnPa <0

Note: the range both of Pn and Pa in this derivation are [-1 , 1], rather than just Pa as in the previ-
ous section.

For example, consider an initial certainty factor Pn = 0.6, and a rule certainty factor, pa of 0.8.
As in the previous section the "room to grow" factor (1-Pa) = 0.4 is used in the update function.
The updated certainty is computed by increasing the current factor by 40% of the update factor
producing a new certainty of 0.92. Notice that if the order was reversed, and the initial factor a =
0.8 and b = 0.6 that 0.8 would be increased by 60% of 0.2 to produce 0.92. The update is simi-
larly computed for negative certainty factors.

The problem with this formulation occurs for the case Pn>0 , Pa<0 . Suppose Pa- 0. Then the
denominator (1-min(Pn,Pa)) - (1-Pa). Therefore, the quotient:

(Pn+Pa) Pn
(1-pa) (1-Pa)

This quantity is discontinuous with the branch for Pn,Pa>0 . This results in the function being
order dependent when jumping between branches, although it is order independent within
branches. The discontinuity could be removed by making a new rule:

Pn+l

Pn + Pa PnPa Pn, Pa > 0

Pn + Pa + PnPa Pn' Pa < 0

Pn + Pa PnPa < 0

Now, the update function is continuous, and monotonicity holds for the two branches Pn,Pa>O
and Pn,Pa<O, and non-monotonic for the branch PnPa<0 . However, it is still not order indepen-
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dent when jumping between branches. This can be remedied with a rule in which only two
branches are used:

P+ =P+ + Pa -P+Pa Pa > 0
P- P- + Pa + P-Pa Pa< 0

Pn= P+ + P-

The case pnPa<0 is never used for permanent updating. Instead, each branch is separately up-
dated. At any time, they can be added to get the present total status, Pn" However, any new data
is updated using the correct branch, rather than the previous total status. Each branch is initial-
ized to zero.

This function is now monotonic within each branch, non-monotonic for the case pnPa<O, contin-
uous everywhere, and order independent The latter property follows from the symmetry with
respect to the variables Pn and Pa within each branch, and the fact that these branches are the
only ones to be updated (separately).

In the following Figures 3.12-3.16 pn has been normalized to a range of 0 < Pn < 1. Figure 3.12
illustrates the difficulty with the original MYCIN method. Figure 3.13 through 3.16 illustrate the
new function described above. Figures 3.13-3.16 may be compared with 3.8-3.11. Note in par-
ticular Figure 3.15 in which a random sequence of conditionals produces a final certainty of 0.5.
This is the expected result, and illustrates the order independence of the function.

1
0.9 "
0.8 ! "=

0.7

~0.6
"-0.5
' 0.4

0.3

0.2

0.1
0i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Instantlations

(a)

-38-



1.00
0.90

0.80 rn-u-.-

0.70 - -

0 0.60 . ,"00

0.50
C 0.40 woo

0.20
0. 0 

w, ' 00 000 0

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of Instantlations

(b)

Figure 3.12 The MYCIN scoring function is order independent in each branch, but the
discontinity in the cs-over function causes differing results given data in reverse order.
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Figure 3.13 Behavior of the order-indpendent scoring function given TRUE conditionals.
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Figure 3.14 Behavior of the order-indpendent scoring function given FALSE conditionals.
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Figure 3.15 Behavior of the order-indpendent scoring function given random conditionals.
This Figure may be compared with Figure 3.10.
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Figure 3.16 Illustration of order-independent scoring function. Note the rule certainty factors indicated by

black squares appear the same number of times, but in different orders In (a) and (b). The Neual certainty fac-
tor In both cases Is 0.65 arrived at in different order. 7%e rule certainty factors are offset toward the positive

to indicate that the function does not default to 0.5.
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4.0 Image Processing Interfaces

A hybrid system in which both symbolically-based subsystems and procedurally-based
subsystems are employed, either system can assume part of the duty of the other. As a result, the
final product may have a very complex symbolic system linked to a very simple procedural
system or vice-versa. In the Model-Based SAR Feature Analysis System, we have made an
effort to divide the duty equally so that relatively simple image processing subroutines are
triggered by an equally simple reasoning system.

The orthogonal breakdown of knowledge organization described in section 3.2 indicated a list of
distinguishing characteristics for both features of interest, and competing features. These
distinguishing characteristics must be determined by procedural image processing primitives.
Recall Table 3.1 in which the distinguishing characteristics were listed across the top row. Many
of these characteristics are related. For example, linear and curvilinear features can be identified
by the same subroutine with the former being a special case of the latter. Section 4.1 briefly
explains the organization of the image processing structure, and the algorithms used to determine
characteristics. Section 4.2 describes the 1/0 requirements of the image processing routines.

4.1 Organization and Algorithms

The 28 distinguishing characteristics listed in section 3.2 were used as variables in the knowl-
edge base to determine the likelihood of each cued feature being a feature of interest. The nature
of the hybrid rule-image processing system provides the means for each of these characteristics
to be determined procedurally using image processing subprograms.

The 28 characteristics fall into 11 categories: linearity, consistency, intensity, local contrast, local
edge gradient, reflectivity, width, length, orientation, statistical distribution, and polarimetric
effects.

There are 12 image processing primitives. Combinations of these primitives can be used to
define characteristics in each category. The image processing primitives include: local tangent,
thresholding, mathematical morphology, surface analysis of a digital elevation model, streak
detection, edge operators, local lineal statistics, local regional statistics or local contrast, analysis
of Mueller matrix, autocorrelation, and region growing. Table 4.1.1 shows the relationship
between the image processing primitives and the feature characteristics. Some characteristics
can be determined using several image processing primitives equally. Other characteristics
require image processing to be used in combination to satisfactorily affirm or deny their values.
Generally, one set of image processing routines can be used to differentiate the characteristics in
one category. The following subsections describe the image processing algorithms and their
applications.

4.1.1 Linearity

For example, the distinction between linear and curvilinear features can be determined using a
mathematical morphology processor. In addition, the degree of linearity can be determined
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using various operators within the mathematical morphology sub-system. Another method for
determining the degree of linearity of a feature uses the variance of local tangent at each pixel
along a feature. A small variance implies a very linear feature, a large variance implies a
curvilinear feature.

4.1.2 Consistency and Roughness

The consistency of a road feature, ie gravel, asphalt, concrete, etc, can be determined by he
roughness of the surface. A gravel road, for example, is rougher than a concrete road.
Radiation incident on a surface is reflected specularly or diffusely depending on the roughness of
the surface. The Rayleigh criterion is most often used to specify the roughness of a surface.
Consider a rough surface with height variations Ah, and radar look angle 0. The path difference
between parallel phase fronts due to the height change is given by:

d = 2Ahcoso

Leading to a phase difference of:

AT = 2nd / X = 4xAhcos / ..

Note that if the phase difference is 0, then the surface is equivalent to a perfectly smooth one, but
as the phase difference approaches r, the two phase fronts destructively interfere. Rayleigh
arbitrarily chose the midpoint x/2 as the dividing line for roughness. Height variations leading to
a phase difference of less that 7/ are due to a smooth surface, and other variations leading to a
phase difference in excess of 7r/2 are due to a rough surface [Colwell et al, 83]. Thus if the height
variations Ah are greater than A/(8cosO) then the surface is rough, otherwise it is smooth.

When radar is incident on a smooth surface, the reflected wave acts as if it has bounced off a
mirror, and produces very little reflected energy in the direction of the sensor. Thus a smooth
surface will provide a specular reflection for the radar, resulting in a dark region in the image. A
rough surface, on the other hand, such as a gravel road, or rock strewn field, will provide ample
surface for radiation to be reflected back toward the imaging sensor. The resulting image will
have a much more intense response from the rougher surface. An image processing system that
uses a simple threshold, or a local regional thresholding algorithm based on local statistics can be
used to distinguish rough surfaces from surrounding ones. Thus both intensity and local contrast
are used to distinguish road consistency.

The water content of one region can be distinguished from another using one of two methods.
First, two neighboring regions consisting of the same types of scatterers but differing water
contents are likely to produce differing radar signatures due to the variation in the oo value of
the scatterers. This results in variation in the intensity of the scattered wave. Thus a local edge
gradient operator can be used to distinguish regions of varying water content. Also, polarimetric
responses differ depending on water content and relative dielectric constant. The number of
bounces metric proposed by [Van Zyl, 891 can be used to infer variations in surface cover and
dielectric constant.
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4.1.3 Statistical Distribution

The streak detection image processing primitive can be used to discriminate a variety of features
that are characterized by long narrow curvilinear signatures. Streak detection uses the statistical
variation of local summed profiles to find linear signatures that contrast their surroundings.
Streak detection will segment only those signatures that are roughly one to two pixels wide, and
have gray values sufficiently disparate from the surrounding region. As a result streak detection
is ideal for identifying narrow roads of various material; -'.hen the surrounding surface material
is differen. Also, because of the unique linked list data structure in which the signatures are
stored, streak detection provides a simple means for determining length of a cued linear feature.
Similarly streak detection can also be used to determine the number of lines within a region, and
when used in combination with the local tangent operator, can determine the number of roughly
parallel lines.

4.1.4 Surface Facet Analysis

The use of a digital elevation model (DEM) is required if the knowledge base is to use motion of
scatterers as a detection mechanism. That is, the motion of a river, or water in a canal or exposed
aqueduct can be used to differentiate the feature from a road or tree line. The change in position
of the water during the imaging period will introduce an extra Doppler shift to the pixels in
which the water was imaged. When the radar is correlated, creating an image from the raw
phase history, the residual motion of the water will cause the water pixels to be displaced from
the river bed or canal. Using a DEM, the location of the river bed can be determined by finding
the local minima in the surface. Given that the SAR image is registered to the DEM, a river may
be distinguished if the pixels corresponding to the water are displaced from the location of the
minima in the DEM.

A DEM can also be used to distinguish a terrain highlighting effects caused by foreshortening
from true features of interest. If the cued feature consistently lies along a ridge or edge of a
plateau, or is consistently adjacent to i shadow in the down-range direction , the cued feature is
likely a terrain induced highlighting effect.

4.1.5 Edge Detection and Local Statistics

Edge operators such a Sobel, Roberts [Ballard et al, 82] and Lee sigma edge detector can be used to
segment regions of varying water content or scattering properties. Edge detectors can also be
used to find systems of roads in clutter.

Once a linear feature has been detected, local lineal statistics can be used to determine the
amount of variation in the intensity of the pixels along the cued segment. Roads that are parallel
and equidistant to the flight path, in particular, will generally exhibit the same, or nearly the
same pixel intensity all along their length. If the width of a cued segment is known, local lineal
statistics can be used to estimate the likelihood of the segment being a road. If the width is not
known, local lineal statistics can be used to determine a width given a standard deviation about
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the mean. Then if that width is within one of the discrete ranges of widths that roads are likely
to fall into, the likelihood of the cued segment being a road can be increased.

Similarly, local regional statistics can be used to identify the borders of regions or to assign a
likelihood that a region is of a certain type. For example, shadowed regions in SAR imagery
usually exhibit a locally bimodal histogram [Curlander et al, 89]. Local statistics can determine if a
bimodal histogram exists within a region, and delineate the borders of the region. Using this
method alone, if a bimodal histogram is not found, the likelihood of a shadow being present in
the region can be reduced, but another test is required if the likelihood of shadow is to be
increased. By comparing the location with a co-registered DEM, the existence of a SAR shadow
can be determined.

4.1.6 Autocorrelation

Another method for finding repeated patterns of lines, a characteristic of urban road grids, is
autocorrelation. An image known to contain a grid in a noisy background can be correlated with
itself, and the resulting image thresholded to produce the locations of the grid lines within the
image. This method has been used successfully by Vexcel on other projects with sub-pixel
accuracy.

4.1.7 Polarimetric Effects

When a polarimetric SAR sensor is used to create the image to be analyzed, the equivalent of a
complex scattering matrix is stored for each pixel. This scattering matrix can be used to create
images corresponding to any combination of transmitted and received polarization. This
polarimetric information can be used to classify radar wave scattering interactions for various
targets. Scattering classes such as exact number of reflections cannot be determined for a given
pixel. But by examining the change direction of orientation of the scattered wave with respect to
the transmitted wave, and the handedness of the scattered wave, the number of reflections can be
narrowed to even or odd classes.

For example, it has been found that water surfaces exhibit a simple class of scattering
characterized by an odd number of reflections [Van Zyl, 891, while scattering from an urban area is
similar to that predicted by primarily even number of reflections. By creating binary images
denoting which pixels fall into the even, odd and diffuse reflections class, credence can be lent to
the status of a particular candidate feature. Also, since corner reflectors can be associated with
the class of even number of reflections, a region containing a high density of corner reflectors
can also be delineated. Agricultural fields have been found to exhibit scattering mostly similar to
an odd number of reflections, while tree covered regions are characterized by a mixture pixels
from even, odd and diffuse classes.

As a result, it is possible to create rules which utilize images created from various combinations
of polarimetric data, to evaluate the likelihood of a candidate feature falling into a particular the-
matic class.
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4.2 110 requirements

Because of the non-Bayesian scoring system in which a certainty factor is associated with each
rule, there is a requirement that each image processing subsystem return a value to the rule base
indicating a numerical measure of the goodness of response of the cued feature. This measure
should ideally be a non-binary value so that the conditional probabilities can reflect the
indeterminant nature of evaluating the cued data. For example, the result of calling the Sobel
edge detector for some region may include the locations of all edge gradients in the region, their
orientations, and the strength of the gradient. The gradient strength can then be used to influence
the certainty factor assigned to that rule.

In this section, the input and output requirements of each of the image processing primitives
listed in section 4.2 (and shown in Table 4.1.1) are described. Each description will include the
data to be passed from the knowledge base, through the control executive, to the image
processing subroutine, and the data to be returned through the control executive to the
knowledge base. The intricacies of how the data is used in the knowledge base will be covered
in section 5.0 of this report.

Analysis of Mueller matrix
Purpose: To delineate regions by even or odd bounce characteristic, or to provide data to

analysis for variation in relative dielectric constant. Also, special masks can be
used to compare the Mueller matrix at each pixel to the signature of some known
material.

Input: region of a multi-polarized image, indices of terms in matrix for special
processing, key number indicating special processing

Output: for each pixel: # of bounces, results of special mask processing
Autocorrelati

Purpose: To detect repeated patterns
Input: image or region of image
Output: Boolean indicating if periodic pattern was detected

period (spacing between individuals) of the pattern
Bimodal Histogrm

Purpose: To determine if a region is characterized by a bimodal histogram, such as regions
of SAR containing shadow, or water

Input: image or region of an image, initial number of bins to divide up histogram
Output: Boolean indicating presence of bimodal histogram, and threshold intensity

DEM surface analysis
Purpose: To determine if a given feature lies along a drain line or in proximity to a ridge

line in an image. This analysis is part of determining if a cued object is in motion,
or a terrain induced shadow.

Input: vectorized representation of a cued feature, registered DEM, key to procedure
Output: Boolean indicating if cued features lie along a drain line, or near ridge

Edg gon=
Purpose: To determine the gradient value of pixels along a cued linear feature
Input: vectorized representation of an object, or a region, key indicating type of input
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Output: values of gradient at each input point, mean, variance of gradient values,
orientation of edges

Local Lineal Statistics
Purpose: To determine the variation in brightness of a lineal object along its length
Input: vectorized representation of a lineal object, width (optional)
Output: mean, variance, max and min intensities along object

Local Regional Statistics (Local Contrast)
Purpose: To determine the variation in brightness of regional, or lineal parts of a region
Input: image or region of an image, number of standard deviations used to delineate

regions
Output: vectorized representations of delineated regions, image containing pixels whose

values are the number of standard deviations above the local means.

Purpose: To determine the linearity of a cued feature, or to indicate the direction
perpendicular to the cued feature at a given point.

Input: vectorized representation of feature, point location along feature
Output: mean, variance of turning angle of feature, direction perpendicular to given point

Mathematical Mohology
Purpose: To delineate locations of features with given shapes within a region
Input: Morphological mask, region of image
Output: vectorized representation of all features in region segmented by morphological

mask
Periodic Highlights

Purpose: To determine if a cued linear feature exhibits periodic highlights, such as a
transmission line.

Input: a vectorized representation of a linear object
Output: Boolean indicating if input linear object is characterized by periodic highlights

Rayeigh Histo~mm
Purpose: To determine if a region is characterized by a Rayleigh histogram implying that

the pixel values are dominated by speckle noise.
Input: image or region of an image
Output: Boolean indicating presence of Rayleigh histogram, mean and variance according

to Rayleigh distribution.
Regio Grwing

Purpose: To delineate regions with statistically different pixel values than their surrounding
region, such as a park in the center of a cluttered city.

Input: image region containing a suspected contrasting area
Output: Boolean indicating if such a region has been found

vectorized outline of region
Strak detection

Purpose: To delineate linear features characterized by local contrast
Input: region suspected to contain such features
Output: vectorized representation of such features

Threshold
Purpose: To delineate regions or finear features whose pixel intensity is in excess of a

-47-



threshold, or lies between a range of thresholds
Input: image of region of an image, minimum and maximum intensities indicating pixels

to be turned on in output image
Output: binary image

Purpose: To extract vectorized representation of lineal or regional features from a binary
image. The vectorized representation consists of an array containing the length,
and all locations of pixels along an unbroken contour.

Input: binary image or region, minimum contour length to be saved
Output: vectorized representation of all contours in input region

Purpose: To determine the width of a linear feature. This subroutine must use the local
tangent subroutine initially to determine in which direction to measure width

Input: vectorized representation of a linear feature, a point along the feature, criteria
used to determine width (eg intensity threshold).

Output: width of feature at given point, mean, variance of feature throughout its length
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S.0 Description of Rules

Both the "meta-rules" and the encoded Nexpert Object 1.1 rules are discussed in this section
including the architecture of the prototype knowledge base within Nexpert. As mentioned in
Section 3, initial efforts during the Phase I project were concerned with developing rules
according to areas of knowledge and properties. These rules and the reasoning or factual basis
behind them is discussed in Section 5.1. Section 5.2 discusses the architecture of the prototype,
and the methods by which the initial rules were incorporated into the prototype. The actual list
of encoded Nexpert Object rules are given in the appendix along with a glossary of terminology
and variable names.

5.1 Meta Rules

The following rules are broken down by areas of knowledge and specific image processing
methodology. The areas correspond to the physics of the SAR imaging scenario, rules of thumb
within the SAR scenario, the feature specific image characteristics, and rules of thumb for roads
as imaged by microwave sensors. These areas of knowledge are detailed in the Figures 3.1
through 3.4.

5.1.1 SAR Imaging Physics

This section describes those phases of the symbolic model that concern the physics of the SAR
imaging scenario. This area of knowledge embraces properties of the physics including the
center wavelength of the radar, the range and azimuth resolution of the sensor, the pixel size of
the final image product, the look angle, the squint angle, the signal-to-noise ratio of the SAR
sensor, the SAR platform, for instance airborne or spaceborne, and the polarization signature if
available.

These rules attempt to quantify the expected response of the features of interest given particular
SAR parameters. Thus, these rules create a model of the imaging mission as it relates to the
features of interest. Some rules in this area of knowledge relate to various features and situations
so that rules in other areas, such as rules of thumb, can be more effective. For example, the
parameters of the SAR scenario may be used to determine if resolution and pixel size are suffi-
cient to distinguish a railroad paralleling a road, while a rule of thumb uses the outcome of the
first rule and another reasoning ploy to determine which of the signatures is actually the road.

The following lists rules pertaining to SAR imaging physics by general subject to which they
apply. Each description includes the statement of the meta-rule followed by the reasoning used,
and references if appropriate.

Terrain Effects (highlighting)
If (DEM available) and

(average distance of cued feature to a zero crossing is less than 5 pixels) then
(terrain induced effects are confirmed) and
(cued feature is discarded).
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If (DEM not available) and
(cued feature is adjacent to a region of shadow along the down-range sicte, then

(terrain induced effects are confirmed) and
(cued feature is discarded).

If (feature avg. intensity is greater than a given threshold) and
(cued feature consists of a single linear signature) then

the certainty factor of (cued feature is a terrain effect) is high
Else,

the certainty factor of (cued feature is a terrain effect) is low.
If (feature is characterized by sharp edge gradient along its length) then

the certainty factor of (cued feature is terrain effect) should be increased.
If (feature is characterized by local contrast) then

the certainty factor of (cued feature is terrain effect) should be increased.
If (feature is adjacent to shadow) then

the certainty factor of (cued feature is terrain effect) should be increased.

In SAR images, the existence of significant terrain variations can lead to terrain effects including
foreshortening, layover, and slope induced highlighting. Some image processing discriminators
may incorrectly flag these effects as features of interest. For example, a sharp straight ridge may
be oriented such that the steepest slope is parallel to the flight path. This slope is likely to
become highlighted due to multiple radar returns from the slope to the same range gate. As a
result, the slope edge may be misclassified as a road due to its width and statistically consistent
pixel values. The knowledge base is therefore required to have rules that check for slope
induced terrain effects in order to differentiate them from features of interest.

There are very few ways to determine if a cued feature is a terrain induced effect, or a true fea-
ture of interest. A terrain induced edge is often followed by a shadow in the down-range direc-
tion in the radar image. To use such a criteria, there must be a definition for a region of shadow.
Not all terrain induced highlights, however, are adjacent to shadow. A more reliable method
would require a registered digital elevation model of the region. Then the location of a flagged
feature could be compared to the elevations in the DEM to determine if it lay along a ridge line.
This could be determined by examining the proximity of the edge to the zero-crossings of the
first difference of the DEM using a distance array image. The distance threshold should be
based on the steepness of the slope of the ride whose zero-crossings are being examined. Thus
the distance threshold can be set as the distance between the zero-crossing of the first-difference
and the nearest local maximum of the first difference of the DEM. By this method, unfortunate-
ly, all features of interest lying along or near a ridge line would be dismissed as terrain induced
effects.

If (look angle > 60") then
surface cover is more tonally consistent regardless of polarization.

If (look angle < 30") then
surface cover is characterized by greater contrast in cross-polarized imagery.

If (region is characterized by predominantly odd # of reflections) then the certainty of
(the feature is ocean) or

(the feature is agricultural field) should be increased.
If (region is characterized by predominantly even # of reflections) then the certainty of

(the feature is urban area, or
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(the feature is other corner reflector) should be increased.
If (region is characterized by predominantly diffuse reflections) then the certainty of

(the feature is a park or open grassy region such as that surrounding a
freeway interchange) should be increased.

If (region is characterized by a mixture of reflections) the certainty factor of
(the feature is a bee covered region) should be increased. [Van Zyl, 891

Antenna Effects (stripinea
If (summed profiles of pixel brightnesses in image along direction of flight path

are characterized by a sinusoidal variation in the range direction with constant
period, or monotonacally increasing period where the first derivative of frequency
with distance afd/s is linear) then

(antenna effects are confirmed).
If (antenna effects) then

(linear features of interest parallel to the flight path cannot be characterized
by local statistical deviation).

SAR images are often characterized by azimuthal striping in the image. This effect is caused by
the side lobes in the antenna pattern of the sensor. In the context of the rule-based system, it is
required to differentiate these antenna effects from features of interest. Antenna effects are
characterized by a low frequency sinusoidal variation in brightness in the range direction leading
to the appearance of striping in the along track direction. It is possible that some of the image
processing classification algorithms could misidentify the striping effects as features of interest
The knowledge base is therefore required to have a rule that checks for the characterization of
antenna striping and rules out the corresponding feature.

Roughness
If (road type is asphalt) then

(Ah - 0.0075 m).
If (road type is concrete) then

(Ah - 0.0015 m).
If (Ah > ,/8cose) then

(surface is rough).
If (Ah < )vcose) then

(surface is smooth).

Concrete roads are usually characterized by large very smooth slabs consisting of a periodic lin-
ear or swirling height variations on the order of 0.15 cm in depth and 0.3 cm in period. The slabs
are punctuated by expansion joints approximately every 5 meters on the order of 1-2 cm in
depth. Asphalt roads are more consistent overall in smoothness with random variations on the
order of 0.5 to 1 cm in depth. The values for Ah were derived from averages of these observed
variations. Values of AM for other terrain surfaces must be derived.

The roughness criteria above is based on the Rayleigh criteria where 0 is the radar incidence
angle on the feature. If the feature is assumed to be level and on the surface, 0 can be assumed
equivalent to the radar look angle.

5.1.2 SAR Rules of Thumb
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This section comprises rules of thumb pertaining to SAR imaging. There is no comprehensive
list of properties involved with this symbolic model, rather this area of knowledge is intended to
provide a niche for general heuristics.

The organization is similar to section 5.1, containing rules arranged by subject. Meta-rules are
followed by an explanation of the reasoning behind them.

Fligbl~m Orientation
If (terrain is urban) then

(orientation is north-south) or
(orientation is east-west).

If (flight orientation is * (clockwise from due north) ) and
(terrain is urban) then

(road orientation (in image) is (7/2 - #) or (z -*)).

The angles presented in the above equation represent a local rotation transformation. This rule of
thumb applies to modem urban areas in which streets and roads often follow a north-south-east-
west grid system. Given the orientation of the flight path with respect to the compass directions,
the orientation of the street grid within the image can be determined.

If (feature is characterized by linear signature) and
(periodic highlights) then

(feature is likely a moving target in the image).

Because of the coherent combination of signals in the synthetic aperture, a moving target will
create a unusual signature. If the target is moving exactly perpendicular to the flight path
direction, the object will be imaged normally, but will be displaced in the image from its
stationary surroundings. For example, an automobile traveling toward the sensor would be
imaged as an automobile, but at a location displaced in azimuth by an amount equal to the
Doppler variation introduced by its velocity. An object moving across the field of illumination
causes a similar effect except that the object may appear in multiple synthesized apertures. Thus
its signature would be smeared and is usually characterized by periodic highlights. It is
important to be able to distinguish this sort of feature from a transmission line, for example. A
transmission line is often characterized by a piecewise linear signature punctuated by towers.
Often the towers and the overhead lines will be located in areas cleared of underbrush and trees.

5.1.3 Feature Specific Image Characteristics

This section comprises a discussion of the symbolic model based on characteristics of the feature
of interest separate from the imaging scenario. These characteristics can include roughness,
terrain, type of road, width, and curvature. The goal being to create a model of the expected
signature given a description of feature of interest, in contrast to section 5.1.1 in which the
expected signature was modeled given the SAR parameters. For example, roads between
agricultural boundaries are usually linear and are often gravel or dirt in consistency. A feature
specific rule embracing this information could be:
if (signature is linear) and
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(surface consistency is gravel or dirt) and
(linear signature divides regions of differing texture) then

the certainty of (agricultural boundary) is increased.
Clearly, this rule cannot stand alone and must depend on rules from other areas such as imaging
physics or rules of thumb to differentiate surface consistency, and textural differences. This
section also contains rules that use image characteristics include pixel intensity, local statistics,
and gradient attributes.

As above, the following rules are organized by general subject and include a description of the
background reasoning.

Roads gml
If (terrain is desert) or

(terrain is urban) then
(roads will be characterized by long linear segments).

In flat open terrain roads and byways are usually characterized by linear segments. The excep-
tions to this rule occur when a road is added to an urban landscape after other features are al-
ready in place. Also, residential areas often exhibit nonlinear road segments. Ideally, a system
for automated change detection in a military scenario would not be interested in such residential
streets. However, in a similar system for automated GIS updating, such changes would be of
foremost importance.

If (terrain is mountainous) then
(roads are characterized by curvilinear segments).

In mountainous or hilly terrain, roads often follow close to the contours of the terrain, crossing
contour lines slowly to achieve a moderate inclination of the roadway. In this case, the road seg-
ments are likely to be short linear sections, coupled by more highly curved segments. Also,
mountain roads tend to follow drainage lines. In this case, few or no linear segments are present
in the road image primitives, rather a series of coupled curvilinear "S" segments constitute the
features.

If (terrain is agricultural) then
(roads are characterized by linear segments).

In agricultural areas, roads tend to follow the paths between the fields. Due to the nature of
property lines, and of planting and harvesting, these boundaries tend to be linear segments.

If (terrain is hilly) and
(road type is asphalt or concrete) then

(road will be characterized by cuts and fills).
If (terrain is characterized by cuts and fills) then

(radar signature will be characterized by alternating
corner reflections and specular reflections).

If (linear segment is constant width) and
(statistically similar pixel values) and
(terrain effects is false) then
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(certainty factor of road is increased).

Once a vectorized linear segment is identified in a SAR image, and the boundaries of the region
likely to contain the road are defined, this rule provides some analysis as to the certainty factor of
the cued feature being a road. If the region surrounding the cued linear segment exhibits small
statistical variance along a constant width section, it is likely that the segment represents a sec-
tion of a road. This theoretical assumption comes from the fact that roads are usually constant
width, and that any linear road segment at approximately the same distance from the imaging
sensor is going to provide comparable backscattered power to the radar. Thus along the length
of the cued segment, the pixel value should not statistically vary much with the region represent-
ing the road. This rule could serve to define the width of the road given that the cued segment is
a road, or to determine if the cued segment is a road given that the width is known.

If (surface cover is dense) and
(canopy is trees) then

(roads will be characterized by tree lines).

In densely forested regions, roads must be maintained with regions of clear cut, such that the
total cleared wodth is broader than the actual road. In SAR imagery, the clear cut region is more
likely to be the dominant mechanism in the backscattered energy. This is due to the comer re-
flector-like effect of the flat even road next to the dense "wall" of tree trunks, branches and cano-
py. The location and orientation of the road with respect to the sensor as well as the width of the
clear cut will also be major factors in determining the visibility of the cut. The comer reflector-
like mechanism may be discernible using the unsupervised classification scheme proposed by
Van Zyl. [Van Zyl, 891

If (indicated region is characterized by a bimodal histogram) and
(the statistically darker region is characterized by a closed contour) or
(the darker region is characterized by a contour that intersects the
down-range edge of the region) then

(shadowed region is confirmed) and (vectorized border of the region can be defined).

In a SAR image a region of shadow is characterized locally by a bimodal histogram.
[Curlander et al, 89] Therefore to delineate the edges of a shadowed region in a SAR image, only a
rectangular region containing the suspected shadow must be indicated. The histogram of the
pixel brightnesses will indicate an intensity threshold. The resulting binary image may then be
vectorized to produce outlines of shadowed regions within the rectangular window.

If (terrain is desert) and
((road type is gravel) or (road type is dirt) ) then

(road pixels will not be characterized by variation in relative dielectric constant).

In unvegetated or sparsely vegetated terrain, dirt or gravel roads are often constructed from local
materials, and are compressed and graded to form a passable surface for vehicles. Under these
conditions, the radar backscatter from the road surface compared to that of the surrounding re-
gion will not be detectable using local contrast image processing operators.

If (road type is dirt) and
(water content is high) and
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(terrain is agricultural) then
(road pixels will not be characterized by local contrast).

In agricultural regions characterized by large amounts of rainfall, dirt or gravel roads between
fields are likely to become damp, or muddy. Under these conditions, the radar backscatter from
the road is not likely to be easily discernible from that of an unplanted field. Therefore, local
contrast operators should not be used as image processing discriminators. Similarly the follow-
ing rules indicate the use of local contrast operators.

If (road type is concrete) and
(terrain is agricultural) then

(road pixels may be characterized by local contrast).
If (road type is asphalt) and

(terrain is agricultural) then
(road pixels may be characterized by local contrast).

These two rules are partial converses of the two immediately above them.

The following rules apply to features that are likely to have similar signatures to roads in SAR
imagery. These features may be confused with roads if only SAR physics or SAR rules of thumb
are used to distinguish roads. The following rules are intended to eliminate certain features by
increasing the probability that a cued object is a feature other than a road. One advantage of this
approach is that the number of conflicts and false identifications is reduced.

The format of each of the rules below is to indicate increased or decreased certainty factor con-
cerning the cued feature. Each section contains a set of essential requirements that if met can de-
termine an initial certainty factor for the cued feature. The essential rule is numbered 0, and
must be executed initially. Several rules follow each initial determination. These rules are in-
tended to be checked after the initial rule is instantiated, and can be used to drive the likelihood
to a TRUE or FALSE determination if necessary. For example, the first subject below is agricul-
tural field boundaries. The initial rule indicates that if the cued feature is linear and character-
ized by differing textures on either side, then the initial certainty factor that the feature is a crop
boundary should be high. If this is not the case, the certainty factor that the feature is a crop
boundary is low. The following three rules can be used as a more exact indication of the status
of the feature, if the initial one was not enough. If one of the secondary rules is instantiated,
however all should be so that the resulting certainty factor is not biased.

Agricultural Field Boundaries
0. if (feature consists of a single linear signature) and

(feature is characterized by different textures on either side) and
the certainty factor of (cued feature is crop boundary) is high

otherwise
the certainty factor of (cued feature is crop boundary) is low.

1. if (feature is characterized by sharp edge gradient along its length) then
the certainty factor of (cued feature is crop boundary) should be increased.

2. if (feature region is characterized by bimodal histogram) then

-55-



the certainty factor of (cued feature is crop boundary) should be decreased.
3. if (feature region is characterized by odd # bounces) then

the certainty factor of (cued feature is crop boundary) should be increased.

A sharp edge gradient indicates a change in radar reflectance characteristics. Such a change in
the context of having instantiated the initial rule would generally indicate the existence of some
feature. When different textures are present, the gradient may be due to the change in textures,
when a tonally consistent background exists, a sharp gradient may indicate a feature that is other-
wise undetectable.

The bimodal histogram is indicative of a shadowed mcgion [Cudander et al, 891, but a shadowed re-
gion is not consistent with agricultural field boundaries. The presence of a bimodal histogram
would suggest the cued feature is a terrain effect, or other feature that would cast a shadow.

Scattering consistent with an odd number of bounces can be associated with agricultural areas.
Consider a field of corn for example. The radar reflections can be modeled by several scattering
mechanisms. The incident radiation can be directly reflected from the upturned leaves or direct-
ly from the ground. This accounts for strong single bounce reflections. The incident radiation
can also be reflected by the ground onto the stalks and back to the sensor, or directly from the
stalks. The latter two mechanisms are likely to be attenuated as the radiation must be propagated
through the top layer of leaves to reach the imaged target. Direct reflections from the ground be-
neath the plants is also attenuated, but since crops are usually planted in orderly rows, approxi-
mately 50% of the ground surface is unobstructed. Thus single-bounce mechanisms dominate.

Transmission lines
0. if (feature consists of a single linear signature) and

(feature signature is punctuated by periodic highlights) then
the certainty factor of (cued features is transmission line) is high,

otherwise,
the certainty factor of (cued features is transmission line) is low.

1. if (feature is characterized by sharp edge gradient along its length) then
the certainty factor of (cued feature is transmission line) should be increased.

2. if (feature is characterized by shadow adjacent to it along its length) then
the certainty factor of (cued feature is transmission line) should be increased.

3. if (feature is characterized by motion with respect to DEM) then
the certainty factor of (cued feature is transmission line) should be decreased.

Again, sharp edge gradients and shadows are used to indicate characteristics associated with
transmission lines. The third characteristic, motion, can be used to determine if the imaged fea-
ture is a river, or possibly a railroad.

Unimproved Roads
0. If (feature is characterized by a single linear signature) and

(width of feature is 2 or fewer integer constant multiples of the width of a lane given
the current resolution) then

the certainty factor of (cued feature is an unimproved road) is high.
otherwise,

the certainty factor of (cued feature is an unimproved road) is low.
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1. If (certainty factor of cued feature is a crop boundary is high) then
the certainty factor of (cued feature is an unimproved road) should be increased.

2. If (surface roughness along linear cued feature is classified as rough) then
the certainty factor of (cued feature is an unimproved mad) should be increased.

3. If (region of cued feature is characterized by a bimodal histogram) then
the certainty factor of (cued feature is an unimproved road) should be decreased.

4. If (region of the cued feature is characterized by a high density of comer reflectors) then
the certainty factor of (cued feature is an unimproved road) should be decreased.

This collection of rules takes advantage of previously determined results. Namely if a linear fea-
ture is identified to lie along the boundary between agricultural fields, then there is an increased
certainty factor that the feature is an unimproved, or unpaved road. The occurrence of paved
roads along agricultural field boundaries is much more rare than unpaved roads. Also, the
roughness of the surface is a major contributor to the classification of the type of road once the
feature is identified as a road. Again the occurrence of shadowed regions is correlated with the
other types of features, and if present should reduce the certainty factor of a road. A high density
of corner reflectors may imply the existence a numerous man-made structures. Depending on
the size and number of structures, the certainty factor of an unimproved road accessing the re-
gion may be reduced. The occurrence of a large number of corner reflectors may also indicate a
natural response such as from a rock strewn field. As such, the decrease applied to the certainty
factor for roads due to density of corner reflectors should be small.

Divided Highways

0. If (feature is characterized by two parallel linear signatures whose separation
varies by less than some variance threshold given current resolution) and
(width of each linear signature is equal to an integer multiple of the width
of a lane given current resolution) then

the certainty factor of (cued feature is a divided highway) should be increased,
otherwise,

the certainty factor of (cued feature is a divided highway) should be decreased.

1. If (both linear signatures of feature are characterized by low intensity variation
along their length) then

the certainty factor of (cued feature is a divided highway) should be increased.
2. If (feature is characterized by local regional contrast) then

the certainty factor of (cued feature is a divided highway) should be increased.
3. If (surface roughness along linear cued feature is classified as smooth) then

the certainty factor of (cued feature is a divided highway) should be increased.
4. If (surface analysis indicates cued feature has low water content) then

the certainty factor of (cued feature is a divided highway) should be increased.

The first rule above concerns the expectation that the scattered radiation from a road surface
should not change appreciably with cross range or cross-azimuth variation. That is, the scattered
power from the road surface is dependent on the surface characteristics of the road. Assuming
the surface characteristics do not change appreciably, the scattered power should not change ap-
preciably. Thus if a linear signature is present in the image, and the scattered power from it is
essentially constant across the image, then the certainty that it is a road should be increased.
More importantly, if this is observed, the certainty should be increased a lot in comparison to the
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other rules for divided highways.

For example, the second rule concerns the presence of local regional contrast. This would occur
if the road surface produced sufficiently contrasting response compared to its immediate sur-
roundings, and the road itself was narrow (one or two pixels wide) in the image. Clearly, these
are very tight requirements and may not occur in high resolution imagery, or in particular envi-
ronmental conditions. Also, these conditions may not indicate a road surface in all cases. There-
fore, the resulting modification of the certainty factor should be smaller than for the first rule.

The third rule is based on the fact that divided highways are often constructed of asphalt or con-
crete or some other very smooth material. Because the surface is host to high speed vehicle trav-
el, smoothness is a requirement. We can use this fact in reverse, namely that if a linear feature is
found to be smooth, then the certainty that the feature is a highway should be increased.

Urban Grids
0. If (region contains multiple linear features) and

(linear features are parallel and occurring at equal intervals) then
the certainty factor of (cued feature region is urban grid) is high,

otherwise,
the certainty factor of (cued feature region is an urban grid) is low.

1. If (width of each linear signature is greater than or equal to twice the width
of a lane given current resolution) then

the certainty of (cued feature region contains an urban grid) should be increased.
2. If (Mueller analysis indicates feature region contains signatures characterized

by even number of bounces) then
the certainty factor of (cued feature is an urban grid) should be increased.

3. If (cued feature is characterized by local regional contrast) then
the certainty factor of (cued feature is an urban grid) should be increased.

4. If (region growing analysis indicates dark linear signatures within bright
background) then

the certainty factor of (cued feature is an urban grid) should be increased.

Rule 2 above is derived from the scattering properties associated with urban regions of San Fran-
cisco imaged by a 24cm multi-polarization radar. The city streets were surrounded by buildings
providing a large number of comer reflectors. As a result, the scattering was dominated by an
even number of reflections as the incident radiation bounced off the streets and the sides of the
buildings to return to the sensor. A few exceptions to these observations occurred on streets that
were oriented nearly perpendicular to the incident radiation (45'). Regions of the city with such
angled streets were characterized dominantly by an odd number of reflections [Van Zyl, 891. The
third and fourth rules also takes advantage of the mass of comer reflectors often observed in
urban landscapes. Wide streets passing through the clutter caused by comer reflections are likely
to stand out from their background as dark linear streaks in a bright background. Only streets
oriented perpendicular to the flightpath, however, will generally be visible.

5.1.4 Rules of Thumb for Roads

This section presents a symbolic model, based on road characteristics, interactions, and
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primitives. Specifically, this section includes heuristic knowledge of roads that does not fall into
either physics, or image characteristics. For example, roads intersect with other roads. Thus if
one road is found, it is logical that simple edge following algorithms could be used to cue other
potential road features for evaluation by other rules in the system. Also, it is common
knowledge that roads generally intersect at right angles. This is not always the case, however,
the certainty factor corresponding to features that do fit such a description can be increased. An
detected intersection between one feature known to be a road and an unknown feature can
increase road certainty factor of that feature.

An orthogonal intersection is one example of a geometric primitive of roads. Other geometric
primitives include various types of freeway limited access interchanges including the cloverleaf,
the trumpet, and the diamond. Detection and classification of these primitives can also lead to
the location of roads. In addition to geometric primitives, there are also textural primitives and
competitive primitives. Textural primitives include more general characteristics including local
contrast, radiometric reversal, speckle noise, and terrain highlighting. Competitive primitives are
those that compete with road primitives and include features like river and road intersections,
river confluences, tree boundaries, crop boundaries, transmission lines, etc. In addition to these
there are other difficult special cases for which rules should be created as required. Special cases
may include perpendicular river confluences, a dam with a road over it, a river and a road in
parallel, a river delta. Some examples of primitives and special cases are shown in Figures 5.1 -
5.5.
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Distinctive
Definition Graphic Example Diarastritie

all linear segments,
constant spatial frequency,

urban grid - high density of corner
I Ireflectors dominates,

roads dark in varying
bright clutter

linedr and curvilinear
trumpet segments

interchange interchanges dominated
inter___hange4 _by open area within clutter

limited access all linear segments
interchange surrounded by grassy

or open area

h linear and circular
cloverleaf segments

surrounded by grassy
P or open area

secondary road linear segment

secondary road curvilinear segment

divided highway _parallel linear segments,
constant spacing

parallel curvilinear
divided highway segments,

constant spacing

parallel curvilinear
divided highway segments

constant spacing

2 parallel linear segments
divided highway with constant spacing,

service road 1 parallel linear segment at
different spacing

Figure 5.1 Geometric Road Primitives
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Graphic Example Distinctive
DefnitonrahiExapl Characteristics

edge gradient,
secondary road local contrast
intersection may be surrounded

by clutter

secondary rad linear, edge
inersection gradient, 2 ormore lanes

secondary road linear, edge
iersection gradient, 2 or more

lanes

linear, edgesecondaiy n gradient, 2 or
more lanes

secondary road linear, edgeintersection gradient, 1 or

more lanes
econdary rad linear, edge

insectonra gradient, I orimore lanes

secondary road linear, edge

inrsectonr rgradient, 2 or
intersectionmore lanes

curvilinear, edgetraffic circle gradient, 2 or

more lanes

Figure 5.2 Geometric Intersection Primitives.
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Distinctive
Definition Graphic Example Characteristics

no discernible
Tree Boundary narrow width

feature, small
gradient variation

no discernible
Tree Boundary narrow widthe Bfeature, diffuse

polarimetric
scatter

linearity, local contrast
Crop boundary edge gradient

odd # of bounces

non parallel sides,
motion of water

River may cause
displacement from
drain line in DEM

non parallel sides,
River motion of water

confluence non-perpendicular
intersection

discontinuous
Transmission Lines gray scale

changing gradient

water appears displaced
Canals from ditch or concrete

canal

local contrast,
corner reflectivity

Causeways shadow
radiometric

reversal of water

water appears displaced
Aqueducts structure

Figure 5.3 Primitives that are competitive with roads in SAR imagery.
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Defimition Graphic Example

Perpendicular
River

confluence

Road and River

Damn and Road

Crops with road
through

swampy regions

with many
interconnected c m

rivers

Figure 5.4 Some cases of difficult detection cases for roads in SAR imagery.
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Definition Graphic Example Distinctive

radiometric 
Characteristice

reversal of water

water/land interface motion of water

SAR shadows locally bimodal
histogram

Sharp bright edges,
Terrain Effects shadjacent toshadowclose to

peak in DEM

Speckle Noise locally RayleighSpeckle Noise .- distributed histogram

dense tree canopy, large
Clear cuts narrow gradient change,

# of bounces, corner
reflect.

large gradient change i Ile n
(eg shoreline) large gradient

small gradient change " . :..
(eg tree line, crop .!. Z..'.small gradient

boundary) ... '-i

Figure 5.5 Textural Primitives for SAR imagery.

This section is organized similarly to 5.1.1 - 5.1.3.

If (two features are linear) and
(they are observed to intersect only once) and
(the intersection occurs at an angle of 90") then

the certainty factor for roads should be increased.
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If (feature is characterized by a linear signature) and
(the width of the feature is an approximate multiple of the size of a lane) then

the certainty factor for roads should be increased.

If (region is urban) and
(an open area is identified to exist at the intersection of two linear segments) then

the certainty that the segments are roads should be increased, and
the certainty that the open region is a limited access interchange should be increased.

If (certainty of a limited access interchange is high) and
(identified open region is square (at any orientation) ) then

the certainty that the interchange is a cloverleaf type should be increased.

If (an intersection of two divided highways is known to exist) and
(one of the highways terminates at the intersection) then

the certainty that the interchange is a trumpet type should be increased.

If (feature is characterized by linear signature) and
(the feature is exceedingly long) and
(the feature crosses a variety of terrains with curving) then

the certainty that the feature is a road should be decreased, and
the certainty that the feature is a fault line, or film scratch should be increased.

If (size of resolution cell is less than half the width of a single lane road) then
the resolution is said to be high.

If (size of resolution cell is greater than twice the width of a single lane road) then
the resolution is said to be low.

f (resolution of the image is sufficiently low) and
(feature is characterized by a sharp edge gradient) and
(feature has no discernible width) and
(variation in feature curvature is very high (ic ragged)) then

the certainty that the feature is a road should be decreased, and
the certainty that the feature is a vegetation type boundary should be increased,

Otherwise,
ff (resolution is sufficiently low) and

(feature is characterized by sharp edge gradient) and
(feature has no discernible width) and
(feature is highly linear, or curvature is constant) then

the certainty that feature is a road should not be decreased.

If (a long narrow feature is identified in a tonally consistent background) and
(feature itself is tonally consistent) then

the certair.-.t thlmt feature is a road should be increased.

If (a long narrow feature is identified in a tonally consistent background) and
(feature itself is punctuated with specular reflections) then

the feature may be a pipeline, railroad, or transmission line.
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If (terrain is not flat) and
(feature is characterized by linear signature) and
(signature crosses contour lines at a rate exceeding 25% either ascending or descending

(25 % grade = 25m increase per 100m distance) )then
the certainty that feature is a road should be decreased.

5.2 Architecture of Prototype

The prototype knowledge based system did not incorporate all the rules described in Section 5.1.
Six of the 20 features given in Table 3.2.1 were selected for classification in the prototype sys-
tem. This resulted in a twelve layer network of 120 rules.

Each feature gave rise to two layers in the network. One layer contained the actual rules that
spawned image processing and updated certainty factors. The other layer was required in order
for Nexpert Object 1.1 to randomly access the rules. For a knowledge based system to work cor-
rectly, there should be no preferred or implied order in which the rules should be executed. The
secondary layer for each feature classification was necessary to insure this.

The design of the prototype closely followed the rule structure derived from decision trees given
in Figure 3.6. This architecture is an implementation of a frame based approach using rules.
Each layer in the knowledge base contained rules concerning a particular feature type. Associat-
ed with each rule was two certainty factors or rule strengths. Depending on whether the rule was
instantiated TRUE or FALSE, the overall certainty factor for the feature would be changed ac-
cordingly.

The rules in each layer did not constitute an all inclusive description of the feature, rather each
layer included tests to classify candidate features by their characteristics. This is similar to a
frame based approach wherein each frame consists of a list of the characteristics associated with
a class. As rules were fired in the prototype, the certainty factors associated with each rule
would reflect the amount that the candidate feature conformed to the overall class description.

Within each layer, rules were organized in an order dependent sequence. As a result, the order
dependent certainty update rule described in section 3.4.2 was used.
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6.0 Results

Section 6.1 describes the image data sets used for testing the system. Section 6.2 describes the
results attained with each data set.

6.1 Description of Data sets

Four image data sets were used to test the rule/procedure system under varying conditions and
for varying targets. The four data sets include SEASAT imagery of Phoenix, AZ, JPL AIRSAR
of Raisin City, CA, Star-i' aircraft SAR of a mountainous region, and satellite imagery of the
Beaufort Sea. The first two data sets contain known, mapped targets of interest that should be
recognized by the system. The mountainous data set contains unmapped regions to test the
system on unknown information, and the Beaufort Sea data set contains only ice floes, to
evaluate the false alarm tendencies of the system. Table 6.1 summarizes the image data sets.

Table 6.1 Summary of Image Set Data

Image Name Sensor Pixel size Size Terrain Type Polarimetric

Phoenix SEASAT 25m 2048x2048 Agricultural/urban No

Raisin City JPL AIRSAR 18m 512x480 Agricultural Yes

Beaufort Sea SEASAT 25m 1578x1578 Ocean No

Star-1 Intera Star-I 6m 512x512 Mountainous No

6.1.1 Phoenix

The Phoenix data set consists of one 2048 x 2048 pixel geocoded image from rev. 523 of the
SEASAT mission. The image contains regions of downtown and suburban Phoenix as well as
surrounding areas of agricultural fields, mountains, and desert. The SEASAT sensor created
imagery with approximately 30m resolution in both azimuth and range. The Phoenix images
were resampled to 12.5m pixel size. The resulting image covered a 75km x 75km region. A
subwindow of size 2048 x 2048 pixels was extracted for use at near full resolution. Various
targets of interest are plainly visible in the imagery making it a good candidate for testing. In
particular, cloverleaf and trumpet interchanges are apparent, as are urban road grids. Suburban
nonlinear roads are lost in the clutter, but rural roads are clearly visible both between crop field
and running through them at angles not aligned with the compass directions. An overview of the
Phoenix data set is shown in Figure 6.1.

6.1.2 Raisin City

The Raisin City data set consists of a 1024 x 1024 pixel L-band multi-polarization image, in

1. Star-I data sets are generated by Intera Technologies, Ltd, Calgary, Alberta, Canada.
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slant range. The equivalent of a complex scattering matrix can be reconstructed at each pixel.
The image was created by the JPL aircraft mounted SAR with a resolution of 7.495 m in range
and 10.98 m in azimuth. The Raisin City data set was collected from an altitude of 12.22 km.
The images contain predominantly rural targets consisting of agricultural fields and buildings.
One main asphalt road cuts through the image from lower left to upper right, while secondary
gravel roads branch off the main road between fields of crops and dirt. The Raisin City image is
shown in Figure 6.2. Figure 6.3 illustrates an example of polarimetric returns.

6.1.3 Beaufort Sea

The Beaufort Sea data set consists of one 1536 x 1536 pixel geocoded image of ice floes
collected on the SEASAT mission. The nominal pixel size is 100m after 4-look averaging. The
predominant targets are regions of ice and water. This data set was included to test the system
on imagery that positively did not contain any features of interest (i.e. roads, intersections and
tree lines). An overview of the image is shown in Figure 6.4.

6.1.4 Star-i

The Star-i data set consists of one 4096 x 4096 pixel image of a previously unmapped region.
(Vexcel recently mapped the region using stereo radar with GPS.) The image was collected by
an aircraft mounted X-band SAR at an altitude of roughly 10km with a nominal resolution of
6m. The pixel size was 4.8m in azimuth and 5.45m in range. The image contains predominantly
uninhabited terrain containing mountains and rivers. Roads are not generally visible nor
distinguishable. This data set was included to test the system on unmapped terrain and check the
responses against those of a trained stereo-operator. An overview of the Star- 1 image is shown
in Figure 6.5.
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Figure 6.1 Phoenix overview image

Figure 6.2 Raisin City overview image
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Figure 6.3 Raisin City Polarimeiric returns. Red pixels indicate even number of bounces.
Green pixels indicate odd number of bounces. Blue pixels indicate diffuse scattering.

Figure 6.4 Beaufort Sea Overview image
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Figure 6.5 Star- I overview image
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6.2 Results of image testing

The initial image testing utilized a subset of the Phoenix SEASAT image containing chiefly rural
and mountainous regions. No digital elevation model was available for use with the Phoenix
data, nor was multi-polarization information. An additional test suite utilized the Raisin City
imagery which contained multi-polarization signatures, the Beaufort Sea data set and the Peru
data set. The Phoenix results are described in section 6.2.2 including a partial trace of the opera-
tion of the rule base. Additional results are described in the section 6.2.3.

6.2.1 Preprocessing

To provide a list of potential features to be evaluated by the rule system, a series of image
preprocessing tests were enacted. This procedure was used for all test images and found to be
relatively robust in that it provided a list of features of which some were of interest, and some
were competing features. The preprocessing was capable of providing only partial signatures of
the features that were segmented. Thus once a feature of interest was found from the cued
features, a secondary procedure was required to trace the features to their end points, and find
intersecting features. At that point, the knowledge processing could recommence for the
intersecting features. This is one of the duties of the control executive.

In Phase II, the initial preprocessing steps will be determined by specific SAR parameters. Signal
to noise ratio, resolution, pixel size, latitude and longitude, and expected types of targets may be
used to delineate preprocessing methodologies.

The preprocessing consisted of a four step process. Initially, a binary edge image was created
using a new edge detection process based on the pixel by pixel difference of the original image
and a smoothed version of it using Lee's sigma filter [Curlander et al, 90]. A mathematical
morphology (MM) opening procedure was then preformed using two simple horizontal and
vertical masks [Ansoult et al, 90]. A streak detection operation is then applied to the result from the
MM processing, in which vector oriented contours derived from raster image format and stored
as linked lists of coordinates [Curlander et al, 90]. The longest lists are then selected as the cued
image segments to be evaluated by the knowledge base. An example of the extracted feature
segments used in the Phoenix testing are shown in Figure 6.6.

6.2.2 Phoenix Results and Account of Reasoning Process'

The initial segmentation applied to the Phoenix SEASAT provided a list of four potential
features of interest to be evaluated by the system. These features consisted of a terrain
highlighting effect, a transmission line, an unimproved road lying on the boundary of two
agricultural fields, and a river bed.

As the processing proceeded on the Macintosh, Nexpert instructed the interactive user as to

1. Some figures in this section were generated by the Nexpert Object Development System version 1. 1 and were
used here by permission of Neuron Data, Palo Alto, CA. Nexpert Object is a trademark of Neuron Data Corpo-
ration.
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which image processing procedures were required. For testing purposes, the operator then exe-
cuted the appropriate procedures on a VAX 11/ 780 and Gould FD5000 image processor. The re-
sulting information was then fed into the knowledge base as it prompted for it.

Figure 6.6 Extracted feature segments from image preprocessing of Phoenix data set.

To illustrate the knowledge processing algorithm, the following discussion will trace a few steps
in the first session of the Phoenix data set. The initial feature processed in the Phoenix data set
was the highlighted terrain effect. This feature was segmented due to its highly linear and bright
signature. The extracted segment was 92 pixels in length.

To initialize the knowledge base, the initial certainty factors for each feature possibility were set
to 0.5, the rule instantiation counter, n, was set to unity, and the hypothesis START which chains
to the first rule was volunteered. In addition, a data initialization file containing the pertinent
SAR information and thresholds was installed. These thresholds were derived in advance based
on image parameters. Due to the arbitrary precedence of feature evaluation, the initial rules
evaluate the likelihood of terrain effects. The fact that the rule chained to the terrain effects rules
first was not determined by the fact that the cued feature was known to be a terrain effect. That
is, there was no operator influence on the initial order of chaining of the inference engine.
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Yes start - Yes okay terraineffect %/

percent-on-highintensity -threshold ?- terrain1 -true
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Yes evaLtihreshold

percent-.on-low-intensity -threshold ( 0 terrain-t -false

->Do (n'pte+pte+(pte)*((0-0.6)))/(n+?

=)Don+I n

Figure 6.7 State of the rule system before eval threshold is checked.

The first rule is shown in Figure 6.7, forward chained from the hypothesis START. The initial
query "Yes okay-terrainoeffect" is checking if the Boolean "okayterrain_effect" has been set to
true indicating that the rules concerning terrain effects may be evaluated. Setting this variable to
true is a result of the START conclusion. The secondary query, "Yes evalthreshold" seeks to
check the value of the Boolean "eval threshold". All Boolean values beginning with the word
eval indicate a requirement to spawn an image processing procedure. In this case, a threshold
operation is indicated. Note in Figure 6.7 the check mark indicates a TRUE instantiation, while
the target indicates the rule that is currently being checked. When eval_threshold is checked,
Nexpert Object will prompt the user with a question of the type 'What is the value of
evalthreshold, TRUE or FALSE?". At this point, the user must execute the threshold routine on
the current feature using an external image processing system. When the processing is complet-
ed, the user would indicate TRUE and the rule system would look as shown in Figure 6.8.

Note, that the partial converse rule, terrain.l_false (#86) is being evaluated in parallel. This is
not exactly true in Nexpert since the system is a serial processor. But when values of variables
are determined, they need not be determined again for other rules.

The next query to be evaluated concerns the results of the threshold procedure. Specifically, the
percentage of pixels turned on after the threshold operation is compared to the "high intensi-
tythreshold" which was set by the image parameters. The high-intensity-threshold is deter-
mined by the global image mean of pixel intensities. In the event that this query is evaluated to
true, the following two procedures will be executed. If it is false, the procedures in the rule "ter-
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rainlfalse" will be executed. These procedures update the certainty factor corresponding to
terrain effects, pte. As mentioned above, all certainty factors are initially set to 0.5.

start N Yes okagyterrain-effect S

Yes eval-threshold

puuias~i~b.fltaCkdi so 0 torrai... -true ("85) ?

-)Do (n*pteelte+(l -pte) *(O.6))/(n+ I) pte ?

-)Do n+1 n?

Yes okay terrain-effect

Yes evalthreshold

percent-on-low-intensitj -threshold < 0 terraL.-I -false ("86) ?
-)Do (n *pte+pte+(pte) *((0-0.6)))/(.+ I1) pte

=>Do n+1 n

Figure 6.8 State of rule system after eval.threshold is set to TRUE.

As the rules are evaluated, these certainty factors are updated by the procedure mechanism
shown in Figure 6.8. Note the difference between the update procedures for the true and false in-
stantiation of the terrain_1 rule. The order dependent scoring function is being used here. A cer-
tainty factor of 0.6 has been assigned to the terrainI rule, resulting in a 60% increase of pte if
terrain_1 is true, or a 60% decrease if it is false.

In this particular example, percenton was determined to be 92.3% and the high-intensi-
ty.threshold was set at 75%. After this data was entered, the rule system looked as shown in
Figure 6.9, and the value of pte was set to 0.65, the average of 0.5 its previous value, and 0.8 ,a
60% increase of (1 - 0.5). A complete explanation of the rule update function is given in section
3.4.2.

After the terrain_1 rule was evaluated, a Boolean variable called terrain_1 was set to true. This
variable would have been set to true even if terrain-l had been false, since it only indicates that
the terrain_1 rule was evaluated. As each rule is evaluated, it provides the forward chaining to
the next rule in the logical evaluation of the feature as shown in Figure 6.9.
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Yes okay._terratLAffect .
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pereent-on-lowJntensity -threshold 4(0 . terrain-I -false

Figure 6.9. Rule system after the terrain-j rule was evaluated.

As with the terrain_1 rule, the terrain_2 rule requires certain image processing routines to be ex-

ecuted, and data from those routines to be input. From Figure 6.9, it is clear that the rule ter-
rain_2 requires the image processing routines "streak detector" and "local-tangent" to be evalu-

ated. After such processing, the value of "lines.number", which is determined by this processing,
must be entered into the rule system. For the particular example of the terrain highlighting ef-
fect, it was found that the average number of lines was 1.14. Rounded to the nearest integer, the
number of lines is unity which will cause the rule terrain_2__true to be instantiated true. At the
same time, the rule terrain_2_false will be set to false, and the Boolean terrain_2 will be set to
true indicating that terrain_2 rules have been evaluated, see Figure 6.10. Note the inverted check
mark indicating a false conclusion to the query in the terrain_2_false rule. After terrain_2 was
evaluated, the value of pte was set to 0.69.
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=>Do n+1 n ?
Figure 6.10. The rule system after the evaluation of the terrain_2 rules.

Evaluation of the cued feature continued as described above prompting for image processing as
required, determining conclusions and updating certainty factors with the results. In addition to
producing a final certainty factor for terrain effects, pte, this session also produced a certainty
factor for each of the features in the rule base. That is, the rule system was capable of evaluating
six features. Each session produces six certainty factors for each cued feature. Good results con-
tain a high certainty factor for the expected feature type, and low certainty factors for the other
five feature types. The resulting certainty factors for the Phoenix test are described in the next
section.
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6.2.3 Test Results and Discussion

The results of testing the prototype knowledge base and image processing sub-systems on the
remaining features in the four image data sets described above are given in Tables 6.2 through
6.5. The certainty factors range from zero to one with 0.5 being exactly unbiased. A low cer-
tainty factor for any particular feature indicates a low chance that the candidate feature type is of
that class. The prototype knowledge base was capable of distinguishing six features including:
crop boundary, divided highway, terrain effect, transmission line, urban grid, and unimproved
road. When presented with a feature that did fall into one of its classes, the inference engine pro-
vided a "best guess" estimate.

Table 6.2 Results of Feature Classification Testing on Phoenix SEASAT data set

Actual Feature terrain effect transmission line unimproved road river

Certainty Factors

crop boundary .63 .61 .60 .60

divided highway .33 .44 .32 .32

terrain effect .71 .49 .56 .67

transmission line .53 .65 .50 .50

urban grid .33 .47 .31 .31

unimproved road .60 .66 .63 .63

Table 6.3 Results of Feature Classification Testing on Raisin City AIRSAR data set

Actual Feature crop boundary unimproved road crop boundary

Certainty Factors

crop boundary .55 .31 .31

divided highway .32 .32 .32

terrain effect .56 .67 .56

transmission line .50 .46 .46

urban grid .31 .27 .22

unimproved road .66 .68 .66
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Table 6.4 Results of Feature Classification Testing on Beaufort Sea SEASAT data set

Actual Feature edge of ice floe edge of ice floe edge of ice floe

Certainty Factors

crop boundary .5 .5 .5

divided highway .5 .5 .5

terrain effect .61 .61 .61

transmission line .5 .5 .5

urban grid .5 .5 .5

unimproved road .5 .5 .5

Table 6.5 Results of Feature Classification Testing on Star- I data set

Actual Feature river terrain effect river

Certainty Factors

crop boundary .29 .54 .54

divided highway .32 .32 .34

terrain effect .59 .59 .63

transmission line .49 .53 .61

urban grid .22 .31 .33

unimproved road .59 .59 .59

Each table shows the candidate features that were tested compared to the resulting certainty fac-
tors for each feature class produced by the expert system. The highest score is shown in bold for
each candidate tested. Ideally, the boldface score should correspond to the actual feature. This
is the case, for example, in the first test of the Phoenix data set. The actual feature in the image
was a terrain effect. The resulting certainty factor for terrain effects was 0.71, the highest in the
column. In other words, the expert system rated the candidate feature to be a terrain effect with
certainty 0.71. Similarly it rated it to be a crop boundary with certainty 0.63, etc.

If the actual feature corresponded to the highest certainty factor in a test, that classification was
deemed a success. If the certainty factor of all of the classified features was between 0.4 and 0.6,
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the classification was deemed as no bias. That is, the knowledge system was not able to gather
sufficient information to make a conclusion about the data. If the highest certainty factor corre-
sponded to a feature other than the actual feature, that was considered a failure. Since rivers, and
edges of ice floes were not one of the features that the rule base could classify, those test cases
were not included in the success/failure statistics. By these criteria, the prototype system was
successful in 71% of the cases, and failed in 29% of the cases. The classification corresponding
to ice floes always resulted in no bias solutions, while rivers were often misclassified as unim-
proved roads, or terrain effects.

The cases in which knowledge system failed both occurred for crop boundaries. The features
were misclassified in both cases as unimproved roads. This is likely due to the rule designating
unimproved roads as crop boundaries in some cases (see Appendix A). There was also a high
degree of correlation between terrain effects and unimproved roads. This implies that more at-
tributes are needed in frames dedicated to each of those features. More attributes will lead to a
more exact classification between similar feature types. Addition of multi-source, or multi-spec-
tral data sets should improve the classification problem.

Note the results for the three ice floe edge segments from the Beaufort Sea data set. Two of the
three feature vectors were in excess of 100 pixels in length and all exhibited very sharp edge gra-
dient as would be expected at the border between ice and water. The expert system, however,
did not have enough data to distinguish between the features, or place them into any of the classi-
fications that were designed in the knowledge base. This indicates that the frame based rule sys-
tem is robust against input data that it is not designed to handle. The inference was fooled into
thinking that these features were terrain effects, however, the resulting certainty factor is not
much greater than 0.5 indicating a very weak certainty.

The results from the Star-1 data set indicate a rivalry between the classification of unimproved
roads and terrain effects. In one case, a river was classified as as an unimproved road, and in the
other as a terrain effect. Closer inspection of the image of Figure 6.5 reveals several major rivers
in mountainous terrain. Comparison of the pixel values and distributions along rivers with those
along nearby terrain highlighting effects illustrates the similarity between the features. The addi-
tion of a digital elevation model (DEM) would provide the necessary differentiation between
these feature classes. The region shown was unmapped, thus no DEM was available. As a re-
sult, the rules pertaining to DEMs had no effect on the final results.
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7.0 Conclusions

Results from testing the 120 rule prototype knowledge base indicate viability of the concept for
automated target detection and identification in SAR imagery. The addition of multi-spectral, or
hyper-spectral imagery would provide more information for a rule based system in Phase H, and
a higher likelihood for success. Additional information provides more attributes for each feature
class thus creating a more complete description for classification.

The prototype knowledge base was developed in Nexpert Object 1.1 on the Macintosh II for
identification and classification of three types of roads from three competing features in SAR im-
agery. The prototype was tested on 16 candidate features from four SAR data sets including
both satellite and airborne sensors. The JPL Raisin City data set included polarimetric data. The
classification accuracy is summarized as follow:

Targets Classified Correctly: 71%
Targets Classified Incorrectly: 29%

Targets without classification frames in the prototype were classified with no bias in 50% of the
cases, and incorrectly in 50% of the cases.

The primary reason for incorrect classification was ambiguity in the attribute description for each
feature in the frame-based implementation of the inference engine. Also, when targets were pro-
vided to the inference engine for which no frames existed to describe them, they were incorrectly
classified 50% of the time. Therefore it is important to develop frames for all possible features
of interest that may be encountered in strategic situations. Further work is required to produce
sufficiently distinct attribute sets for each feature of interest, possibly including hyper-spectral
data attributes.

The knowledge environment should be more interactive and less automated. In the current sys-
tem, potential exists for misclassification due to incomplete atribute descriptions in each frame.
Even with highly detailed frame descriptions this problem -rill remain with fully automated sys-
tems. With a small amount of operator interaction, the incidence of incorrect classification could
be radically reduced without much time lost.

More descriptive frames for feature classes of interest should be developed. Frames for unwant-
ed classes can be sparser as long as they are sufficient to remove such features from consider-
ation as features of interest.

Remaining problems and concerns include:
* More extensive testing and characterization of performance of the current prototype in a

wider variety of SAR scenarios.
* Developing more descriptive frames for each type of feature class of interest.
* Obtaining multi-spectral and/or hyper-spectral data sets for development of classification

algorithms with increased data capability.
" More fully exploiting realtionships between features, such as the interconnectivity of

roads, as a technique for identification.
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8.0 Recommendations for Phase H

The all-weather, day and night coverage provided by Synthetic Aperture Radar (SAR) promises
an ideal source of information for target classification and tactical change detection. One prob-
lem with SAR sensors however, is a lack of consistency in imaged signatures for the same target
given variations in imaging scenarios. We have shown in this Phase I effort the feasibility of
using symbolic models for feature classification in a variety of SAR scenarios.

Having shown feasibility in Phase I, we propose to develop a prototype deliverable software sys-
tem for Phase II that supports:

* SAR and hyperspectrad image data with collateral data sets,
including imaging parameters, digital feature data, DTED, etc.,

" interactive analysis on an open single workstation,
* feature classification and change analysis for one to two feature

classes using symbolic modeling,
" architecture providing for symbolic modeling of additional feature classes as required.

The work plan for building such a system would include integrating / developing the following:
* an interactive custom inference engine written in Lisp,
" an integrated image processing and expert system development environment',
* a library of image processing and image understanding routines,
* a relational database of image and feature data,
" an interactive Unix2, X-Window System3 environment.

The proposed deliverable symbolic classification software will extend the capabilities of system
for registration and change queuing previously contracted to Vexcel by the US Army To-
pographic Engineering Center. Therefore, a significant amount of the software engineering
groundwork will already be completed providing more opportunity to enhance the symbolic sys-
tem development.

The use of an integrated image processing and expert system development environment will alle-
viate the task of communication between the knowledge system and the image processing en-
vironment. Such a development environment will provide a comprehensive library of image pro-
cessing and image understanding subroutines with higher level Lisp programming in

By using the Lisp programming language, we will be able to develop a custom inference engine
for the task of automated classification and change detection. Rather than undertaking the modi-
fication of a rule environment suited to a different task, which proved to be difficult in Phase I,
we will develop custom applications and a frame-based implementation of the classification
knowledge for specific feature types.

1. A preliminary analysis shows that Amerinex Artificial Intelligence provides a commercially available system
for this purpose known as KBVision.

2. Unix is a trademark of AT&T Bell Laboratories.
3. The X-Window System is a trademark of Massachusetts Institute of Technology.
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The development environment will be a multi-layer tool consisting of: a set of conventional
image processing tools, a library of higher level image understanding sub-systems, a relational
feature database in which attributes may be defined by the user, and a Common Lisp program-
ming environment. It will be an open system providing for user extension at all levels. In Phase
1I we will incorporate hyper-spectral registration and change detection algorithms, and add cus-
tom C code programs implementing new algorithms for sub-pixel registration. The Lisp pro-
gramming environment will have direct access to the feature database, and can execute any pro-
cedural subroutine in the system. Thus, the control interface between the image understanding,
registration and change detection, and the expert system will be invisible1 .

The Phase 1I knowledge processing module will have an interactive multi-color graphical user
interface. The frame-based expert system will operate in concert with the user, highlighting pos-
sible targets according to the likelihood derived from the encoded domain knowledge. Features
will be marked by colored outlines for clear identification by the operator. On a Unix platform,
the expert assistant will carry out multiple decision tasks simultaneously providing dynamic
screen updating of the information as it is processed. Since Unix is a multi-tasking environment,
the operator may monitor automated processing of the expert system, or pursue other tasks. At
any time, the user will be able to intervene to correct or add data to the Lisp processor.

The architecture of the knowledge module will provide for expansion so that knowledge bases
for various feature types can be added to increase the functionality of the system. The Phase H
effort will concentrate on development of a knowledge base for identification and classification
of roads in hyper-spectral imagery. This development will draw heavily on the Phase I rules for
road-type features in SAR imagery. Additional rules will be added to take advantage of hyper-
spectral data sources. Provision will be made to handle additional rule systems in Lisp for other
feature types.

As a tradeoff, the Phase II effort may be directed toward a broader base development of frames
for classification of a wide variety of features. In that event, however, each class would be de-
scribed by relatively sparse frame attribute sets. Misclassification would be more prominent, and
the resulting system would essentially provide a demonstration of the possible applicability of
symbolic systems in classification and change detection. It is therefore recommended that the
Phase II effort concentrate on extensive symbolic and procedural development of one type of
feature. The system architecture will be designed to accommodate numerous feature classifica-
tion knowledge systems, but the bulk of the time will be directed toward producing a useful tool
for automated classification and change detection.
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Appendix A List of Nexpert Encoded Rules

Rule cropljtrue (#I)
If there is evidence of okayscropboundary

And there is evidence of eval-streakjetector
And there is evidence of eval_local-tangent
And lines.angular.stddev-curvthreshold is less than 0

Then crop-I is confirmed.
And (n*pcb+pcb+(1-pcb)*(0.6))/(n+l) is assigned to pcb
And n+1 is assigned to n

Rule crop!l false (#2)
If there is evidence of okaycropboundary

And there is evidence of eval_streak_detector
And there is evidence of evaljocal-tangent
And lines.angularstd_dev-curv_threshold is greater than or equal to 0

Then crop-l is confirmed.
And (n*pcb+pcb+pcb*((0-0.6)))/(n+l) is assigned to pcb
And n+l is assigned to n

Rule crop-2,true (#3)
If there is evidence of crop-j

And there is evidence of eval-localcontrast
And there is evidence of evaDEM drainanalysis
And there is no evidence of motion

Then crop_2 is confirmed.
And (n*pcb+pcb+(1-pcb)*(0.4))/(n+l) is assigned to pcb
And n+l is assigned to n

Rule crop_2noncommittal (#4)
If there is evidence of crop-l

And there is evidence of eval_local_contrast
And there is no evidence of eval_DEM_drainanalysis

Then crop2 is confirmed.
And n+l is assigned to n

Rule crop-2_false (#5)
If there is evidence of crop!I

And there is evidence of evallocalcontrast
And there is evidence of evalDEM_dran_analysis
And there is evidence of motion

Then crop.2 is confirmed.
And (n*pcb+pcb+(pcb)*((0-0.4)))/(n+l) is assigned to pcb
And n+l is assigned to n

Rule crop_3_true (#6)
If there is evidence of crop_2

And there is evidence of evalMueller
And percenLodd is greater than or equal to 50

Then crop_3 is confirmed.
And (n*pcb+pcb+(l-pcb)*(0.4))/(n+l) is assigned to pcb
And n+ I is assigned to n
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Rule crop_3_noncommittal (#7)
If there is evidence of crop_2

And there is no evidence of evalMueller
Then crop_3 is confirmed.

And n+1 is assigned to n

Rule crop_3_false (#8)
If there is evidence of crop_2

And there is evidence of evalMueller
And percent_odd is less than 50

Then crop_3 is confirmed.
And (n*pcb+pcb+(pcb)*((0-0.4)))/(n+1) is assigned to pcb
And n+1 is assigned to n

Rule crop_4_true (#9)
If there is evidence of crop_3

And there is evidence of eval-edge.detector
And gradient-gradient threshold is greater than or equal to 0

Then crop_4 is confirmed.
And (n*pcb+pcb+(pcb)*((0-0.2)))/(n+l) is assigned to pcb
And n+1 is assigned to n

Rule crop_4_false (#10)
If there is evidence of crop_3

And there is evidence of evaledgedetector
And gradient-gradientthreshold is less than 0

Then crop_4 is confirmed.
And (n*pcb+pcb+(1-pcb)*(0.2))/(n+l) is assigned to pcb
And n+1 is assigned to n

Rule crop_5_"ue (#11)
If there is evidence of crop_4

And there is evidence of eval_bimodal-histogram
And there is no evidence of bimodalhistogram

Then crop_5 is confirmed.
And n+1 is assigned to n

Rule crop_5_false (#12)
If there is evidence of crop_4

And there is evidence of eval_bimodalhistogram
And there is evidence of bimodalhistogram

Then crop5 is confirmed.
And (n*pcb+pcb+pcb*((0-0.4)))/(n+l) is assigned to pcb
And n+I is assigned to n

Rule crop_6_true (#13)
If there is evidence of crop_5

And there is evidence of evalRayleighhistogram
And there is evidence of Rayleighjhistogram

Then crop_6 is confirmed.
And (n*pcb+pcb+(i-pcb)*(0.2))/(n+l) is assigned to pcb
And n+1 is assigned to n

A-2



Rule crop_6.false (#14)
If there is evidence of crop_5

And there is evidence of evalRayleigh I histogram
And there is no evidence of Rayleigh-histogram

Then crop_6 is confirmed.
And (n*pcb+pcb+(pcb)*((0-0.2)))/(n+l) is assigned to pcb
And n+1 is assigned to n

Rule dividedl-true (#15)
If there is evidence of okay..dividedhighway

And there is evidence of evalstreakdetector
And there is evidence of evallocaltangent
And ROUND(lines.number) is precisely equal to 2

Then divided_1 is confirmed.
And (n*pdh+pdh+(1-pdh)*0.4)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule dividediJalse (#16)
If there is evidence of okay-dividedhighway

And there is evidence of evalstreakdetector
And there is evidence of evallocaltangent
And ROUND(lines.number) is not equal to 2

Then divided_1 is confirmed.
And (n*pdh+pdh+pdh*((0-0.4)))/(n+l) is assigned to pdh
And n+1 is assigned to n

Rule divided_2_true (#17)
If there is evidence of divided_lI

And there is evidence of eval_local_tangent
And there is evidence of eval_width_profiler
And width-4*lane.size is greater than or equal to 0

Then divided_2 is confirmed.
And (n*pdh+pdh+(1-pdh)*0.6)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_2jalse (#18)
If there is evidence of divided_1

And there is evidence of eval_local_tangent
And there is evidence of eva_widthprofiler
And width-4*lane.size is less than 0

Then divided_2 is confirmed.
And (n*pdh+pdh+(pdh)*((O-0.6)))/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_3_true (#19)
If there is evidence of divided_2

And there is evidence of eval_local_contrast
And there is evidence of evalDEMdrainanalysis
And there is no evidence of motion

Then divided_3 is confirmed.
And (n*pdh+pdh+(1-pdh)*0.4)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_3_noncommittal (#20)

A-3



If there is evidence of divided_2
And there is evidence of evallocalcontrast
And there is no evidence of evalDEMdrainanalysis

Then divided_3 is confirmed.
And n+l is assigned to n

Rule divided_3-false (#21)
If there is evidence of divided_2

And there is evidence of evallocalcontrast
And there is evidence of evalDEMdrain-analysis
And there is evidence of motion

Then divided_3 is confirmed.
And (n*pdh+pdh+pdh*((0-0.4)))/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_4jtrue (#22)
If there is evidence of divided_3

And there is evidence of evaLMueller
And percent_water is less than or equal to 30

Then divided_4 is confirmed.
And (n*pdh+pdh+(l-pdh)*0.3)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_4-noncommittal (#23)
If there is evidence of divided_3

And there is no evidence of evalMueller
Then divided_4 is confirmed.

And n+l is assigned to n

Rule divided_4jalse (#24)
If there is evidence of divided_3

And there is evidence of evalMueller
And percent_water is greater than 30

Then divided_4 is confirmed.
And n+l is assigned to n

Rule divided_5_true (#25)
If there is evidence of divided_4

And there is evidence of evalstreak-detector
And there is evidence of evalwidth.profiler
And there is evidence of evallocalstatistics
And intensity.sigma-low.sigmathreshold is less than or equal to 0

Then divided_5 is confirmed.
And (n*pdh+pdh+(1-pdh)*0.2)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_5jfalse (#26)
If there is evidence of divided_4

And there is evidence of evalstreak.detector
And there is evidence of evalwidth-profiler
And there is evidence of evallocalstatistics
And intensity.sigma-low.sigmathreshold is greater than 0

Then divided_5 is confirmed.
And n+l is assigned to n
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Rule divided_6jtrue (#27)
If there is evidence of divided_5

And there is evidence of eval_localcontrast
And contrast.sigma-sigma-threshold is greater than or equal to 0

Then divided_6 is confirmed.
And (n*pdh+pdh+(l-pdh)*0.2)/(n+l) is assigned to pdh
And n+1 is assigned to n

Rule divided_6false (#28)
If there is evidence of divided_5

And there is evidence of evallocalcontrast
And contrast.sigma-sigma-threshold is less than 0

Then divided_6 is confirmed.
And n+l is assigned to n

Rule divided_7_true (#29)
If there is evidence of divided_6

And there is evidence of eval_Mueller
And there is evidence of eval_threshold
And surface.roughness is "smooth"

Then divided_7 is confirmed.
And (n*pdh+pdh+(l-pdh)*0.2)/(n+l) is assigned to pdh
And n+l is assigned to n

Rule divided_7_noncommittal (#30)
If there is evidence of divided_6

And there is no evidence of eval_Mueller
Then divided_7 is confirmed.

And n+l is assigned to n

Rule divided_7jalse (#3 1)
If there is evidence of divided_6

And there is evidence of eval_Mueller
And there is evidence of evalthreshold
And surface.roughness is not "smooth"

Then divided_7 is confirmed.
And n+l is assigned to n

Rule grid-l-true (#32)
If there is evidence of okay-urban-grid

And there is evidence of eval_streakdetector
And there is evidence of eval_local_tangent
And ROUND(lines.number) is precisely equal to 2

Then gridI is confirmed.
And (n*pug+pug+(1-pug)*0.7)/(n+l) is assigned to pug
And n+l is assigned to n

Rule gridlj.false (#33)
If there is evidence of okay-urbangrid

And there is evidence of evalstreakdetector
And there is evidence of evallocaltangent
And ROUND(lines.number) is not equal to 2

Then grid-l is confirmed.
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And (n*pug+pug+pug*((0-0.7)))/(n+l) is assigned to pug
And n+l is assigned to n

Rule grid_2_jrue (#34)
If there is evidence of grid_1

And there is evidence of eval_localtangent
And there is evidence of eval-width-profiler
And width-4*lane.size is greater than or equal to 0

Then grid_2 is confirmed.
And (n*pug+pug+(1-pug)*0.3)/(n+l) is assigned to pug
And n+l is assigned to n

Rule grid_2_false (#35)
If there is evidence of gridI

And there is evidence of eval_localtangent
And there is evidence of eva-width-profiler
And width-4*lane.size is less than 0

Then grid_2 is confirmned.
And (n*pug+pug+pug*((0-0.3)))/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_3_uue (#36)
If there is evidence of grid2

And there is evidence of eval_streak_detector
And there is evidence of eval_localtangent
And lines.angularstddev-curv-threshold is less than 0

Then grid_3 is confirmed.
And (n*pug+pug+(l-pug)*0.4)/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_3_false (#37)
If there is evidence of grid_2

And there is evidence of eval_streakdetector
And there is evidence of eval_local_tangent
And lines.angularstddev-curvthreshold is greater than or equal to 0

Then grid_3 is confirmed.
And (n*pug+pug+pug*((0-0.4)))/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid.4_jrue (#38)
If there is evidence of grid_3

And there is evidence of eval_localcontrast
And contrast.sigma-sigma.threshold is greater than or equal to 0

Then grid_4 is confrmied.
And (n*pug+pug+(l-pug)*0.2)/(n+l) is assigned to pug
And n+l is assigned to n

Rule grid_4_false (#39)
If there is evidence of grid_3

And there is evidence of eval_local_contrast
And contrast.sigma-sigmathreshold is less than 0

Then grid_4 is confirmed.
And n+l is assigned to n
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Rule grid_5_true (#40)
If there is evidence of grid_4

And there is evidence of eva_local_tangent
And there is evidence of evalwidth-proftler
And there is evidence of evalstreakdetector
And ROUND(ines.number)-1 is greater than 0
And lines.spacing-variance-ine-spacing-variancethreshold is less than or equal to 0

Then grid_5 is confirmed.
And (n*pug+pug+(1-pug)*0.8)/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_5_faseB (#41)
If there is evidence of grid_4

And there is evidence of eva_loca-tangent
And there is evidence of evwidthprofiler
And there is evidence of evalstreakdetector
And ROUND(lines.number)-I is less than or equal to 0

Then grid_5 is confirmed.
And (n*pug+pug+pug*((0-0.8)))/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_5_falseA (#42)
If there is evidence of grid_4

And there is evidence of evaLlocal_tangent
And there is evidence of evalwidth-profiler
And there is evidence of eva_streak_detector
And ROUND(lines.number)-I is greater than 0
And lines.spacing-variance-line-spacing-variance_threshold is greater than 0

Then grid_5 is confirmned.
And (n*pug+pug+pug*((0-0.8)))/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_6_true (#43)
If there is evidence of grid_5

And there is evidence of eva!_Mueller
And percent_even is greater than or equal to 50

Then grid6 is confirmed.
And (n*pug+pug+(1-pug)*0.4)/(n+l) is assigned to pug
And n+1 is assigned to n

Rule grid_6_noncommittal (#44)
If there is evidence of grid_5

And there is no evidence of evalMueller
Then grid_6 is confirmed.

And n+1 is assigned to n

Rule grid_6_false (#45)
If there is evidence of grid_5

And there is evidence of eva_Mueller
And percenteven is less than 50

Then grid_6 is confirmed.
And n+I is assigned to n

Rule jump-terrain_4 (#46)
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If there is evidence of terrain_4
And pte is less than or equal to 0. 1

Then okaycrop-boundary is confirmed.
And I is assigned to n

Rule jumnpjterrain_3 (#50)
If there is evidence of terrain_3

And pte is less than or equal to 0.1
Then okaywcropjboundary is confirmed.

And I is assigned to n

Rule jump-terrain2 (#47)
If there is evidence of terrain_2

And pte is less than or equal to 0.1
Then okay-crop-boundary is confirmed.

And I is assigned to n

Rule jumpterrain (#48)
If there is evidence of terrain_1

And pte is less than or equal to 0.1
Then okay-cropboundary is confirmed.

And 1 is assigned to n

Rule 49
If there is evidence of terrain_1

And there is evidence of terrain_2
And there is evidence of terrain3
And there is evidence of terrain_4
And there is evidence of terrain_5

Then okaycropjboundary is confirmed.
And 1 is assigned to n

Rule jumpunimproved_4 (#51)
If there is evidence of unimproved_4

And pur is less than or equal to 0.1
Then okay-divided-highway is confimed.

And 1 is assigned to n

Rule jumpjunimproved_3 (#52)
If there is evidence of unimproved_3

And pur is less than or equal to 0.1
Then okay-dividedjhighway is confirmed.

And 1 is assigned to n

Rule jumpunimproved_2 (#53)
If there is evidence of unimproved_2

And pur is less than or equal to 0.1
Then okay-divided-highway is confirmed.

And 1 is assigned to n

Rule jump-junimproved 1 (#55)
If there is evidence of unimproved_l

And pur is less than or equal to 0.1
Then okay.divided-highway is confirmed.
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And 1 is assigned to n

Rule 54
If there is evidence of unimproved_1

And there is evidence of unimproved_2
And there is evidence of unimproved_3
And there is evidence of unimproved_4
And there is evidence of unimproved_5

Then okayjdivided-highway is confirmed.
And 1 is assigned to n

Rule start (#56)
If there is evidence of start
Then okay-terraineffect is confirmed.

And 1 is assigned to n

Rule jumpsrop._5 (#57)
If there is evidence of crop_5

And pcb is less than or equal to 0.1
Then okay-transmissionline is confirmed.

And 1 is assigned to n

Rule jumpscrop_4 (#58)
If there is evidence of crop_4

And pcb is less than or equal to 0.1
Then okay-transmissionline is confirmed.

And I is assigned to n

Rule jump-crop_3 (#59)
If there is evidence of crop_3

And pcb is less than or equal to 0.1
Then okay transmissionline is confirmed.

And 1 is assigned to n

Rule jumpsprop_2 (#60)
If there is evidence of crop_2

And pcb is less than or equal to 0.1
Then okay-transmissionline is confirmed.

And 1 is assigned to n

Rule jump.rop-l (#62)
If there is evidence of cropjl

And pcb is less than or equal to 0.1
Then okay-transmission_line is confirmed.

And 1 is assigned to n

Rule 61
If there is evidence of crop-l

And there is evidence of crop_2
And there is evidence of crop_3
And there is evidence of crop_4
And there is evidence of crop_5
And there is evidence of crop_6

Then okayjtransmission_line is confirmed.
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And I is assigned to n

Rule jumptrans._5 (#63)
If there is evidence of trans_5

And ptl is less than or equal to 0.1
Then okay.unimprovedroad is confirmed.

And 1 is assigned to n

Rule jump-trans_4 (#64)
If there is evidence of trans-4

And ptl is less than or equal to 0.1
Then okay-unimproved-road is confirmed.

And I is assigned to n

Rule jumptrans_.3 (#65)
If there is evidence of trans_3

And ptl is less than or equal to 0.1
Then okay-.unimprovedroad is confirmed.

And 1 is assigned to n

Rule jump-trans_.2 (#66)
If there is evidence of trans_2

And ptl is less than or equal to 0.1
Then okay-unimprovedroad is confirmed.

And I is assigned to r.

Rule jump-trans-l (#68)
If there is evidence of trans_1

And ptl is less than or equal to 0.1
Then okay-unimprovedroad is confirmed.

And 1 is assigned to n

Rule 67
If there is evidence of transl

And there is evidence of trans_2
And there is evidence of trans_3
And there is evidence of trans_4
And there is evidence of trans_6
And there is evidence of trans_6

Then okay.unimprovedroad is confirmed.
And 1 is assigned to n

Rule jump-divided_6 (#69)
If there is evidence of divided_6

And pdh is less than or equal to 0.1
Then okay-urbanSrid is confirmed.

And 1 is assigned to n

Rule jump-divided-5 (#70)
If there is evidence of divided_5

And pdh is less than or equal to 0.1
Then okay-jurban-grid is confirmed.

And I is assigned to n
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Rule jump-divided_4 (#71)
If there is evidence of divided_4

And pdh is less than or equal to 0.1
Then okay-jurban.grid is confirmed.

And 1 is assigned to n

Rule jump.divided._3 (#72)
If there is evidence of divided_3

And pdh is less than or equal to 0.1
Then okayurban-grid is confirmed.

And 1 is assigned to n

Rule jump-divided_2 (#73)
If there is evidence of divided_2

And pdh is less than or equal to 0.1
Then okay-urbant.grid is confimed.

And 1 is assigned to n

Rule jump-dividedjl (#74)
If there is evidence of divided_1

And pdh is less than or equal to 0.1
Then okayurban-grid is confirmned.

And 1 is assigned to n

Rule 75
If there is evidence of divided_1

And there is evidence of divided_2
And there is evidence of divided_3
And there is evidence of divided_4
And there is evidence of divided_5
And there is evidence of divided_6
And there is evidence of divided_7

Then okayurban-.grid is confirmed.
And 1 is assigned to n

Rule jump-grid.6 (#76)
If there is evidence of grid_6

And pug is less than or equal to 0.1
Then STOP is cenfirmed.

Rule jump_.grid_5 (#77)
If there is evidence of grid_5

And pug is less than or equal to 0.1
Then STOP is confirmed.

Rule jump_..gid4 (#78)
If there is evidence of grid_4

And pug is less than or equal to 0.1
Then STOP is confirmed.

Rule jumpgrid_3 (#79)
If there is evidence of grid_3

And pug is less than or equal to 0.1
Then STOP is confirmed.
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Rule jump_.id_2 (#80)
If there is evidence of grid_2

And pug is less than or equal to 0. 1
Then STOP is confrmed.

Rule jump_.gridjl (#81)
If there is evidence of grid.l

And pug is less than or equal to 0.1
Then STOP is confirmed.

Rule grid_7_true (#82)
If there is evidence of grid_6

And there is evidence of eval_region_.grower
And there is evidence of executejegionanalysis

Then STOP is confirmed.
And (n*pug+pug+(l-pug)*0.4)/(n+l) is assigned to pug
And I is assigned to n

Rule grid_7_noncommittal (#83)
If there is evidence of grid_6

And there is no evidence of evalregion-grower
Then STOP is confimned.

And I is assigned to n

Rule grid_7_false (#84)
If there is evidence of grid_6

And there is evidence of eval_region.grower
And there is no evidence of execute-egionanalysis

Then STOP is confirmed.
And I is assigned to n

Rule terrainltrue (#85)
If there is evidence of okay_terraineffect

And there is evidence of eval_threshold
And percenLon-high-intensity-threshold is greater than or equal to 0

Then terrain_1 is confirmed.
And (n*pte+pte+(l-pte)*(0.6))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule terrain_l_false (#86)
If there is evidence of okay-terrain-effect

And there is evidence of eval_threshold
And percent on-lowintensity_threshold is less than 0

Then terrain_1 is confirmed.
And (n*pte+pte+(pte)*((0-0.6)))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule terrain_2_true (#87)
If there is evidence of terrain_1

And there is evidence of evalstreakdetector
And there is evidence of evallocal_tangent
And ROUND(lines.number) is precisely equal to 1

Then terrain_2 is confirmed.
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And (n*pte+pte+(l-pte)*(0.4))/(n+1) is assigned to pte
And n+1 is assigned to n

Rule terrain_2_false (#88)
If there is evidence of terrain_1

And there is evidence of eval_streak_detector
And there is evidence of eval_localtangent
And ROUND(lines.number) is not equal to I

Then terrain_2 is confirmed.
And (n*pte+pte+(pte)*((0-O.4)))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule terrain_3_true (#89)
If there is evidence of terrain_2

And there is evidence of evaledge_detector
And gradient-gradient_threshold is greater than or equal to 0

Then terrain_3 is confirmed.
And (n*pte+pte+(1-pte)*(0.4))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule terrain_3_false (#90)
If there is evidence of terrain_2

And there is evidence of eval edgedetector
And gradient-gradientthreshold is less than 0

Then terrain_3 is confirmed.
And (n*pte+pte+(pte)*((0-0.4)))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule terrain_4_true (#91)
If there is evidence of terrain_3

And there is evidence of evallocal_contrast
And contrast.sigma-sigma threshold is greater than or equal to 0

Then terrain_4 is confirmed.
And (n*pte+pte+(1-pte)*(0.2))/(n+1) is assigned to pte
And n+1 is assigned to n

Rule terrain_4_false (#92)
If there is evidence of terrain_3

And there is evidence of eval_localcontrast
And contrast.sigma-sigma threshold is less than 0

Then terrain_4 is confirmed.
And (n*pte+pte+(pte)*((0-0.2)))/(n+l) is assigned to pte
And n+l is assigned to n

Rule terrain_5_true (#93)
If there is evidence of terrain_4

And there is evidence of eval_bimodal_histogram
And there is evidence of bimodalhistogram

Then terrain_5 is confirmed.
And (n*pte+pte+(1-pte)*0.2)/(n+1) is assigned to pte
And n+1 is assigned to n

Rule terrain_5_false (#94)
If there is evidence of terrain_4
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And there is evidence of eval-bimodal_histogram
And there is no evidence of bimodal_histogram

Then terrain_5 is confirmed.
And (n*pte+pte+(pte)*((0-0.2)))/(n+l) is assigned to pte
And n+1 is assigned to n

Rule trans_1_true (#95)
If there is evidence of okay.transmission_line

And there is evidence of eval_streak_detector
And there is evidence of eval_local_tangent
And ROUND(lines.number) is precisely equal to 1

Then trans_1 is confirmed.
And (n*ptl+ptl+(1-ptl)*(0.4))/(n+l) is assigned to ptl
And n+l is assigned to n

Rule trans_1_false (#96)
If there is evidence of okay.transmission_line

And there is evidence of eva streak_detector
And there is evidence of evallocaltangent
And ROUND(lines.number) is not equal to 1

Then trans_1 is confirmed.
And (n*ptI+ptl+(ptl)*((0-0.4)))/(n+l) is assigned to ptl
And n+1 is assigned to n

Rule trans_2_true (#97)
If there is evidence of trans_1

And there is evidence of eva-periodic.highlights
And there is evidence of periodic-highlights

Then trans_2 is confirmed.
And (n*ptl+ptl+(1-ptl)*(0.4))/(n+l) is assigned to ptl
And n+1 is assigned to n

Rule trans_2_false (#98)
If there is evidence of trans_1

And there is evidence of eva periodicihighlights
And there is no evidence of periodic_highlights

Then trans_2 is confirmed.
And (n*ptl+ptl+ptl*((0-0.4)))/(n+1) is assigned to ptl
And n+l is assigned to n

Rule trans_3_true (#99)
If there is evidence of trans_2

And there is evidence of eval-streakdetector
And there is evidence of evallocaltangent
And lines.angular_std_dev-curv_threshold is less than 0

Then trans_3 is confirmed.
And (n*ptl+ptI+(l-ptl)*(0.4))/(n+l) is assigned to pt
And n+l is assigned to n

Rule trans_3_false (#100)
If there is evidence of trans_2

And there is evidence of eval_streak_detector
And there is evidence of evallocaltangent
And lines.angularstd-dev-curvthreshold is greater than or equal to 0
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Then trans_3 is confirmed.
And n+l is assigned to n

Rule trans_4_true (#101)
If there is evidence of trans.3

And there is evidence of evalilocal-contrast
And contrast.sigma-sigma-threshold is greater than or equal to 0

Then trans_4 is confirmed.
And (n*ptl+pd+(1-pd)*0.4)/(n+l) is assigned to ptl
And n+1 is assigned to n

Rule trans_4_false (#102)
If there is evidence of trars_3

And there is evidence of evallocalconwast
And contrast.sigma is less than 2

Then trans_4 is confirmed.
And (n*ptl+ptl+ptl*((0-0.4)))/(n+l) is assigned to ptl
And n+l is assigned to n

Rule trans_5_true (#103)
If there is evidence of trans_4

And there is evidence of eval_bimodalhistogram
And there is evidence of bimodal_histogram

Then trans_5 is confirmed.
And (n*pd+pd+(1-ptl)*0.2)/(n+l) is assigned to ptl
And n+1 is assigned to n

Rule trans_5_false (#104)
If there is evidence of trans_4

And there is evidence of eval_bimodal_histogram
And there is no evidence of bimdal_histogram

Then trans_5 is confirmed.
And (n*ptl+ptl+pl*((0-0.2)))/(n+l) is assigned to ptl
And n+1 is assigned to n

Rule trans_6_true (#105)
If there is evidence of trans_5

And there is evidence of evallocalcontrast
And there is evidence of eval_DEM_drainanalysis
And there is no evidence of motion

Then trans_6 is confirmed.
And (n*ptl+ptl+(1 -ptl)*0.4)/(n+l) is assigned to ptl
And n+l is assigned to n

Rule trans_6_noncommittal (#106)
If there is evidence of trans_5

And there is evidence of eval_local_contrast
And there is no evidence of evalDEMdrain_analysis

Then trans_6 is confirmed.
And n+1 is assigned to n

Rule trans_6_false (#107)
If there is evidence of trans_5

And there is evidence of eval_localcontrast
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And there is evidence of evalDEMdrain-analysis
And there is evidence of motion

Then trans_6 is confirmed.
And (n*pfl+pfl+ptl*((0-O.4)))/(n+1) is assigned to ptl
And n+1 is assigned to n

Rule unimprovedltrue (#108)
If there is evidence of okay-unimprovedjroad

And there is evidence of evalstreakdetector
And there is evidence of evallocaltangent
And ROUND(lines.number) is precisely equal to 1

Then unimproved_1 is confirmed.
And (n*pur+pur+(1-pur)*(0.2))/(n+l) is assigned to pur
And n+1 is assigned to n

Rule unimproved_1_false (#109)
If there is evidence of okay-unimproved-road

And there is evidence of evastreakdetector
And there is evidence of evallocaltangent
And ROUND(lines.number) is not equal to 1

Then unimproved_1 is confirmed.
And (n*pur+pur+pur*((0-1.0)))/(n+l) is assigned to pur
And n+1 is assigned to n

Rule unimproved_2_true (#110)
If there is evidence of unimproved_1

And there is evidence of evalMueller
And there is evidence of eval_threshold
And surface.roughness is "rough"

Then unimproved_2 is confirmed.
And (n*pur+pur+(1-pur)*0.4)/(n+l) is assigned to pur
And n+1 is assigned to n

Rule unimproved_2_noncommittal (#111)
If there is evidence of unimproved_1

And there is no evidence of evalMueller
Then unimproved_2 is confirmed.

And n+1 is assigned to n

Rule unimproved_2_false (#112)
If there is evidence of unimprovedI

And there is evidence of evalMueller
And there is evidence of eval_threshold
And surface.roughness is not "rough"

Then unimproved_2 is confirmed.
And n+I is assigned to n

Rule unimproved_3_true (#113)
If there is evidence of unimproved_2

And there is evidence of eva!_local_tangent
And there is evidence of eval_widthprofiler
And width-2*lane.size is less than or equal to 0

Then unimproved_3 is confirmed.
And (n*pur+pur+(l-pur)*0.4)/(n+l) is assigned to pur
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And n+l is assigned to n

Rule unimproved_3_false (#114)
If there is evidence of unimproved_2

And there is evidence of eval_localtangent
And there is evidence of eval-width-profiler
And width-2*lane.size is greater than 0

Then unimproved_3 is confirmed.
And (n*pur+pur+pur*((0-0.4)))/(n+l) is assigned to pur
And n+1 is assigned to n

Rule unimproved_4_true (#115)
If there is evidence of unimproved_3

And there is evidence of eval_threshold
And there is evidence of evalMueller
And percenteven is greater than or equal to 50

Then unimproved_4 is confirmed.
And (n*pur+pur+(1-pur)*0.4)/(n+l) is assigned to pur
And n+1 is assigned to n

Rule unimproved_4_noncommittal (#116)
If there is evidence of unimproved_3

And there is evidence of eval_threshold
And there is no evidence of evalMueller

Then unimproved_4 is confrmed.
And n+1 is assigned to n

Rule unimproved_4_false (#117)
If there is evidence of unimproved_3

And there is evidence of eval_threshold
And there is evidence of evalMueller
And percent_even is less than 50

Then unimproved_4 is confmned.
And n+1 is assigned to n

Rule unimproved_5_lrue (# 118)
If there is evidence of unimproved_4

And there is evidence of eval_bimodal_histogram
And there is evidence of bimodal_histogram

Then unimproved_5 is confirmed.
And n+l is assigned to n

Rule unimproved_5_false (#119)
If there is evidence of unimproved_4

And there is evidence of eval_bimodal_histogram
And there is no evidence of bimodal_histogram

Then unimproved_5 is confrmned.
And (n*pur+pur+(1-pur)*0.2)/(n+l) is assigned to pur
And n+l is assigned to n
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Appendix B Rule Terminology Glossary

bimodal histogram - Boolean value indicating whether there is a bimodal histogram in the local
region orthe candidate feature.
contrast.sigma - The average number of standard deviations above or below the local mean for
pixels along the candidate feature.

crop_1 - Boolean indicating the crop-l rule has been instantiated.

crop_2 - Boolean indicating the crop_2 rule has been instantiated.

crop_3 - Boolean indicating the crop_3 rule has been instantiated.

crop_4 - Boolean indicating the crop_4 rule has been instantiated.

crop_5 - Boolean indicating the crop_5 rule has been instantiated.

crop_6 - Boolean indicating the crop_6 rule has been instantiated.

curv threshold - The threshold value set by the user that determines whether a candidate linear
featuFe is classified as linear or curvilinear.

divided 1 - Boolean indicating the divided_1 rule has been instantiated.

divided_2 - Boolean indicating the divided_2 rule has been instantiated.

divided_3 - Boolean indicating the divided_3 rule has been instantiated.

divided_4 - Boolean indicating the divided_4 rule has been instantiated.

divided_5 - Boolean indicating the divided_5 rule has been instantiated.

divided_6 - Boolean indicating the divided_6 rule has been instantiated.

divided_7 - Boolean indicating the divided_7 rule has been instantiated.

eval _bimodal histogram - Boolean that is set to indicate to the control executive that the test
for a bimodal Histogram is to be executed for the candidate feature.

eval DEM drain analysis - Boolean that is set to indicate to the control executive that the
module that'compa-res the locations of DEM drain lines to those of the candidate feature is to be
executed.

eval edge detector - Boolean that is set to indicate to the control executive that the edge detec-
tion iodure is to be executed for the candidate feature.

eval local contrast - Boolean that is set to indicate to the control executive that local regional
statistics are to be compiled for the candidate feature.

eval local statistics - Boolean that is set to indicate to the control executive that local lineal sta-
tistijs are io be compiled for the candidate linear feature.

evai-local tangent - Boolean that is set to indicate to the control executive that the local tangent
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module is to be executed for the candidate feature.

eval Mueller - Boolean that is set to indicate to the control executive that the polarimetric eval-
uation module is to be executed for the candidate feature.

evalperiodic highlights - Boolean that is set to indicate to the control executive that the test
for periodic highlights is to be executed for the candidate feature.

eval Rayleigh histogram - Boolean that is set to indicate to the control executive that the test
for aRayleigh histogram is to be executed for the candidate feature.

evalregion grower - Boolean that is set to indicate to the control executive that the region
growing module is to be executed for the candidate feature.

eval streak detector - Boolean that is set to indicate to the control executive that the streak de-
tection module is to be executed for the candidate feature.

eval threshold - Boolean that is set to indicate to the control executive that a simple threshold is
to b-executed for the candidate feature.

eval-width_profiler - Boolean that is set to indicate to the control executive that the width pro-
filer module is to be executed for the candidate feature.

execute region analysis - Boolean that is set to indicate to the control executive that the region
growing analysis module is to be executed for the candidate feature.

gradient - A floating point number indicating the average edge gradient for the pixels in the
candidate feature.

gradient-threshold - The mean + I standard deviation of the global edge gradient for an image.

gridl - Boolean indicating the grid_1 rule has been instantiated.

grid_2 - Boolean indicating the grid_2 rule has been instantiated.

grid_3 - Boolean indicating the grid_3 rule has been instantiated.

grid_4 - Boolean indicating the grid_4 rule has been instantiated.

grid_5 - Boolean indicating the grid_5 rule has been instantiated.

grid..6 - Boolean indicating the grid_6 rule has been instantiated.

high intensity threshold - The intensity threshold set by the user that determines if a pixel will
be turned on during a simple thresholding operation.

intensity.sigma - The standard deviation of intensity of pixels along a candidate feature as deter-
mined by the local lineal statistics module.

lane.size - The size in pixels of a nominal single lane road. This parameter may be determined
from the SAR resolution and pixel size.

line spacingvariance threshold - The threshold set by the user that constrains the allowable
variance in spacing of parallel lines detected in an image such that those lines may be classified
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as a divided highway.

lines.angular std dev - The standard deviation of the curvature of a linear feature as deter-
mined by the rocal-tangent module.

lines.number - The number of parallel lines in the vicinity of the candidate feature as deter-
mined by a combination of the local tangent module and the threshold module.

lines.spacingvariance - The variance observed in the spacing of parallel lines in the vicinity of
the candidate feature as determined by a combination of the local tangent module and the thresh-
old module.

low intensity threshold - The intensity threshold set by the user that determines if a pixel will
be turned on during a simple thresholding operation.

low sigma threshold - The user defined threshold for standard deviation of intensity in the
locaT lineal statistics module. This parameter is used in relation to the fact that a small variation
in the reflected power from a linear feature all along its length may indicate that the feature has a
consistent dielectric constant. Moreover, the feature likely man-made.

motion - Boolean value set by the DEM drain line analysis module indicating the the candidate
feature lies close to and parallel to a DEM drain line.

n - The number of instantiations of rules in a particular class of features.

okay crop boundary - The Boolean value set by the inference engine when it determines that
it is okay to-evaluate rules relating to crop boundaries.

okay divided highway - The Boolean value set by the inference engine when it determines that
it is olay to evaluate rules relating to divided highways.

okay terrain effect - The Boolean value set by the inference engine determines when it deter-
minesthat it isokay to evaluate rules relating to terrain effects.

okay transmission line - The Boolean value set by the inference engine determines when it
determines that it isokay to evaluate rules relating to transmission lines.

okay unimproved road - The Boolean value set by the inference engine determines when it
determines that it is okay to evaluate rules relating to unimproved roads.

okay urbangrid - The Boolean value set by the inference engine determines when it deter-
minesthat it is okay to evaluate rules relating to urban grids.

pcb - The certainty factor for crop boundaries.

pdh - The certainty factor for divided highways.

percent even - The floating point number returned from the polarimetric analysis modules con-
cerning he percentage of the pixels in the candidate feature that are consistent with an even
number of bounces reflection.

percent odd - The floating point number returned from the polarimetric analysis modules con-
cerning he percentage of the pixels in the candidate feature that are consistent with an odd num-
ber of bounces reflection.

B-3



percent on - The floating point number returned from the simple threshold module indicating
the numer of pixels in the candidate feature that fall outside of the low intensity threshold
and the high intensity.threshold.

percent water - The floating point number indicating the water content of the region surround-
ing the candidate feature as derived from the polarimetric analysis module.

periodic highlights - The Boolean value returned from the periodic highlights module indicat-
ing if the candidate feature is characterized as such.

pte - The certainty factor for terrain effects.

ptl - The certainty factor for transmission lines.

pug - The certainty factor for urban grids.

pur - The certainty factor for unimproved roads.

Rayleigh histogram - The Boolean value indicating whether the intensity distribution in the re-
gion surrounding the candidate feature should be classified as Rayleigh. Rayleighhistogram
and bimodal-histogram always have opposite values.

sigmathreshold - The user defined threshold for segmenting outlyer in the local regional statis-
tics module.

start - The symbolic link to the starting end of the reasoning chain. Suggesting start will initiate
forward chaining.

stop - The symbolic link to the end of the reasoning chain. Suggesting stop will initiate back-
ward chaining.

surface.roughness - A qualitative descriptor of the surface roughness of the candidate feature
based upon the classification of its surface content.

terrain 1 - Boolean indicating the terrain_1 rule has been instantiated.

terrain_2 - Boolean indicating the terrain_2 rule has been instantiated.

terrain_3 - Boolean indicating the terrain_3 rule has been instantiated.

terrain.4 - Boolean indicating the terrain_4 rule has been instantiated.

terrains - Boolean indicating the terrain_5 rule has been instantiated.

transi1 - Boolean indicating the trans_I rule has been instantiated.

trans 2 - Boolean indicating the trans_2 rule has been instantiated.

trans.3 - Boolean indicating the trans_3 rule has been instantiated.

trans_4 - Boolean indicating the trans._4 rule has been instantiated.

trans_5 - Boolean indicating the trans_5 rule has been instantiated.
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trans_6 - Boolean indicating the trans_6 rule has been instantiated.

unimproved-1 - Boolean indicating the unimproved-l rule has been instantiated.

unimproved_2 - Boolean indicating the unimproved_2 rule has been instantiated.

unimproved_3 - Boolean indicating the unimproved_3 rule has been instantiated.

unimproved_4 - Boolean indicating the unimproved_4 rule has been instantiated.

unimproved.S - Boolean indicating the unimproved_5 rule has been instantiated.

width - The mean width in pixels of the candidate linear feature as determined by a combination
of the local tangent module and the threshold module.
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Appendix C Decision Trees

The decision trees presented in this section indicate the logical reasoning path for each of the five
features described. In each decision tree, the certainty factors for TRUE and FALSE are given
in the left column, and the required image processing subsystems are shown across the top row.
The image processing modules apply only to the decision directly under them (which is repeated
across the diagonal along the decision tree).
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